Global analysis of canopy-scale chlorophyll fluorescence retrievals from MetOp-A/GOME-2 data

Maximilian Voigt¹

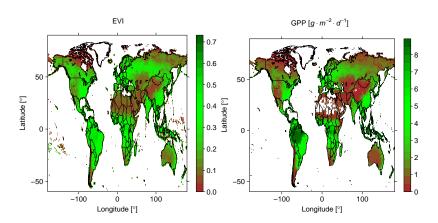
Luis Guanter¹, Yongguang Zhang¹, Philipp Köhler¹, Martin Jung²

June 17, 2013

Freie Universität ¹Free University Berlin, Germany ²Max Planck Institute for Biogeochemistry, Germany

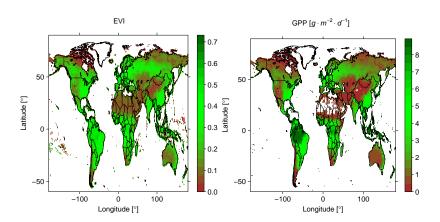
Outline

- SIF and GPP on global scale
- 2 Crop study
- 3 SIF modeling

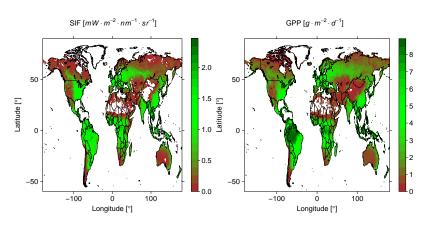

Data

- Global data driven GPP estimates (M. Jung, MPI-BGC Jena)
- Remotely sensed SIF from GOME-2 (J. Joiner et al)
- Both on a 0.5° grid
- Monthly resolution
- Comparison with EVI (derived from MODIS)

http://www.esa.int

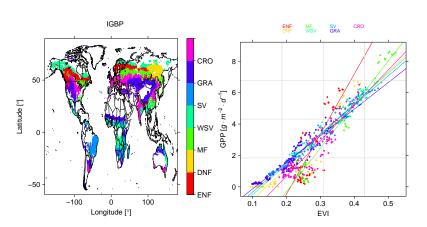

EVI vs. GPP

• General agreement in multi-year-average patterns

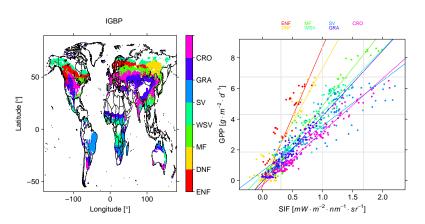


EVI vs. GPP

- General agreement in multi-year-average patterns
- Low agreement in ratios of high and less productive regions.


SIF vs GPP

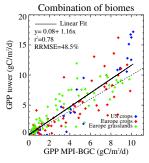
• Good agreement even for low productive regions

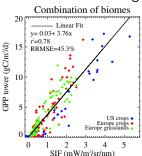

EVI per biome view

- Small spread in slopes between different biomes
- Linear relationship is questionable

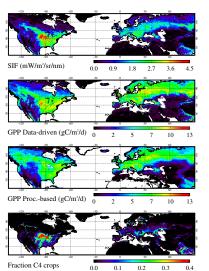
SIF per biome view

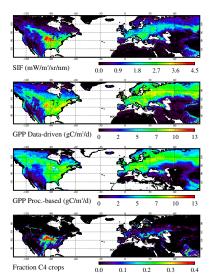
- Larger spread in slopes
- Good linear relationship


Scaling of SIF to GPP

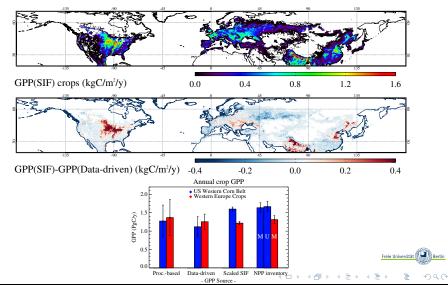

 Linear relation per biome can be used to scale SIF to GPP (i. e. crops and grasslands)

Scaling of SIF to GPP

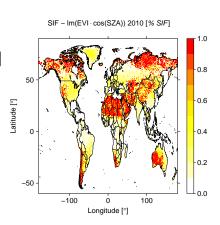

- Linear relation per biome can be used to scale SIF to GPP (i. e. crops and grasslands)
- Flux towers on homogeneous areas as basis for fitting


Why crops?

 Pattern of high productivity at US WCB

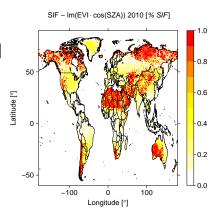

Why crops?

- Pattern of high productivity at US WCB
- Not apparent in process-based and data-driven models (Paio et al, Beer at al)

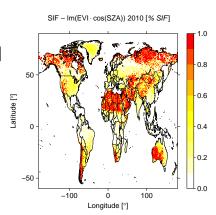


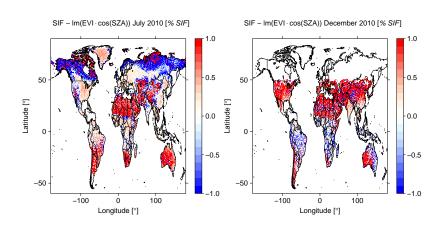
Crop Study

Understanding the signal

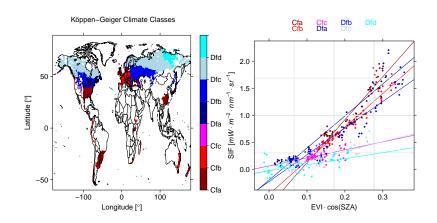

•
$$SIF = a + b [EVI \cdot \cos(SZA)]$$

Understanding the signal

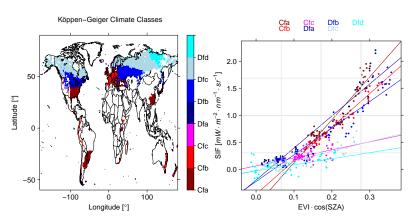

- $SIF = a + b [EVI \cdot \cos(SZA)]$
- Large differences in high latitudes
- Simple linear scaling seems to be inappropriate


Understanding the signal

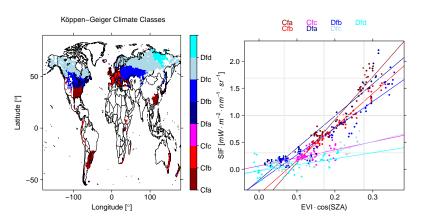
- $SIF = a + b [EVI \cdot cos(SZA)]$
- Large differences in high latitudes
- Simple linear scaling seems to be inappropriate
- Which additional factors do influence the signal?



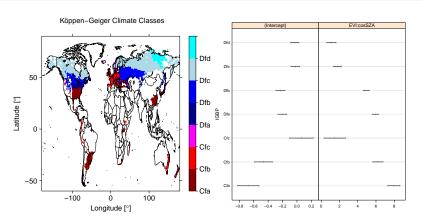
Seasonal view



Additional influences


Additional influences

- Significant slope differences for different climate regions
- SIF dependency on temperature and precipitation patterns


Additional influences

- Significant slope differences for different climate regions
- SIF dependency on temperature and precipitation patterns
- Maybe also a matter of canopy structure

SIF modeling

- Significant slope differences for different climate regions
- SIF dependency on temperature and precipitation patterns
- Maybe also a matter of canopy structure

Summary

- Global patterns of vegetation productivity and GOME-2 SIF retrievals show really good agreement
- Closer investigation reveals different slopes per biome (IGBP)
- Linear relationship between SIF and GPP on tower scale leads to a new estimation of crop productivity (GPP)
- Main drivers of SIF are leaf greenness (EVI) and illumination (cos(SZA))
- Local meteorological conditions regulate the magnitude of scaling

Thank you for your attention!

