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1. Introduction 

 
The EUMETSAT Satellite Application Facility on Land Surface Analysis 

(Land-SAF) generates, on an operational basis, Land Surface Temperature (LST) from 
the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat 
Second Generation (MSG) satellites (Schmetz et al., 2002a). LST is an important 
parameter for the monitoring of surface energy budget, since it is the primary variable 
determining the upward thermal radiation and one of the main controllers of sensible 
and latent heat fluxes between the surface and the atmosphere. Thus, the reliable and 
long-term estimation of LST is extremely important for a wide number of applications, 
including amongst others: (i) model validation (Trigo and Viterbo, 2001; Mitchell et al. 
2004), (ii) data assimilation (Caparrini et al., 2004; Qin et al, 2007; Bosilovich et al., 
2007); (iii) hydrological applications (Kustas et al., 1996; Wan et al., 2004); and (iv) 
climate monitoring (Jin, 2004; Jin et al., 2005, Yu et al, 2008). The Land-SAF LST is 
processed at the full SEVIRI temporal and spatial resolution allowing the capture of the 
full diurnal cycle over clear sky regions.  

LST estimations from remotely sensed data are generally obtained from one or 

more channels within the thermal infrared atmospheric window from 8-to-13 µm 
(Dashet al., 2002). Operational LST retrievals often make use of split-window 
algorithms (e.g., Prata, 1993; Wan and Dozier, 1996), where LST is obtained through a 
semi-empirical regression of top-of-atmosphere (TOA) brightness temperatures of two 
pseudo-contiguous channels, i.e., the split-window channels. The Land-SAF LST 
algorithm is based on the generalised split-window (GSW) formulation initially 
developed for AVHRR and MODIS (Wan and Dozier, 1996), now adapted to SEVIRI 
split-window channels. The error of LST retrievals via GSW depends on (i) the 
uncertainty of surface emissivity, (ii) the water vapour content of the atmosphere, and 
(iii) or the satellite view angle. Because the latter determines the total optical path, LST 
estimations are often limited to satellite zenith angles (SZA) below ~60o, where 
retrieval errors are still acceptable (e.g., Wan and Dozier, 1996 ; Sun and Pinker, 2003; 
Jiménez-Muñoz amd Sobrino, 2006). In the case of geostationary platforms, already 
unable to provide the global coverage of polar-orbiters, such view angle restrictions 
pose additional limitations to the product spatial coverage. A wider retrieval area must 
be carefully weighted against an increasing error.  

Any parameter inference is of little usefulness without an uncertainty measure. 
Here, we discuss the calibration of the GSW algorithm used operationally by the Land-
SAF and the respective assessment of LST retrieval errors. These errors take into 
account the expected performance of the GSW under different atmospheric conditions, 
as well as the characterization of input uncertainties and their propagation to the final 
LST estimation. 
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2. Data Description 

 

2.1.  SEVIRI onboard Meteosat Second Generation 

 
Meteosat Second Generation (MSG) is a series of 4 geostationary satellites to be 

operated by the European Organization for the Exploitation of Meteorological Satellites 
(EUMETSAT). The Spinning Enhanced Visible and Infrared Imager (SEVIRI) is the 
main sensor onboard MSG and it was designed to observe an earth disk with view 
zenith angles (SZA) ranging from 0o to 80o, with a temporal sampling of 15 minutes and 
a 3km sampling distance at the sub-satellite point. SEVIRI encompasses unique spectral 
characteristics and accuracy, with 12 channels covering the visible to the infrared 
(Schmetz et al., 2002a). The data are disseminated to users after being rectified to 0o 
longitude, which means the satellite viewing geometry varies slightly with the 
acquisition time (satellite zenith angles typically differ by less than 0.25o between 
consecutive observations).  
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Figure 1 Spectral response functions of SEVIRI thermal windows channels, centred at 10.8 and 

12.0 µµµµm, respectively, onboard MSG1, MSG2 and MSG3. 

 
 
LST is estimated from TOA brightness temperatures of SEVIRI split-window 

channels, centred on 10.8 and 12.0 µm (hereafter IR108 and IR120), respectively. 
Figure 1 shows the response functions of these two channels for MSG1, MSG2 and 
MSG3 (from Meteosat-8 onwards, once operational). The expected radiometric noise 
for IR108 (IR120) channel available onboard MSG-1 to MSG-3 is of the order of 0.11 
K (0.15-0.16K; Schmetz et al. 2002b); further details may be found at EUMETSAT 
website http://www.eumetsat.int. Possible inaccuracies in SEVIRI absolute or relative 
calibration are not considered here, despite their relevance for the quality of LST 
retrievals. However, it is worth mentioning that EUMETSAT has recently initiated a 
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routine inter-calibration of SEVIRI infrared channels and the Infrared Atmospheric 
Sounding Interferometer (IASI; onboard EUMETSAT polar-orbiter MetOp-A), with the 
aim of understanding the mechanisms for (changing) biases and developing operational 
corrections (Hewinson and König, 2008). Mean differences between IASI and 
Meteosat-8 (Meteosat-9) reported by Hewinson and König (2008) are 0.16K and 0.13K 
(0.03K and 0.05K), for channels IR108 and IR120, respectively. 
 
 

2.2. Calibration/Verification Database 

 
The calibration (and verification) of the GSW presented here relies on radiative 

transfer simulations of TOA brightness temperatures for SEVIRI channels IR108 and 
IR120. The simulations are performed for the database of global profiles of temperature, 
moisture, and ozone compiled by Borbas et al. (2005) for clear sky conditions, and 
referred to as SeeBor. The database contains over 15,700 profiles taken from other 
datasets, such as NOAA88 (Seemann et al., 2003), TIGR-like (Chevallier, 2001), and 
TIGR (Chedin et al., 1996), that are representative of a wide range of atmospheric (clear 
sky) conditions over the whole globe. In addition, surface parameters such as skin 
temperatures (Tskin) and a landcover classification within the International Geosphere-
Biosphere Programme ecosystem categories (IGBP) (Belward, 1996) are assigned to 
each profile. Skin temperature over land surfaces corresponds to LST in SeeBor and is 
estimated as a function of 2m temperature (T2m), and solar zenith and azimuth angles 
(Borbas et al. 2005). In this study, we assume that each profile corresponds to one given 
pixel within the Meteosat disk. Thus, for radiative simulation purposes, a SZA chosen 
randomly within the 0o - 80o range is assigned to each profile, except for cases with (i) 
Tskin below 270 K, which are constrained to angles above 30o; and (ii) Tskin < 240 K, 
which are allowed to be observed by a geostationary satellite with a zenith angle within 
60 o and 80o. This procedure ensures a realistic cover of simulated radiances for all 
possible viewing geometries. 

 
The SeeBor database described above was split into two subsets – one used for 

the calibration of the LST GSW, and an independent one used for verification of the 
fitted algorithm. The former consists of 77 atmospheres selected to cover a broad 
variety of water vapour content (from very dry to moist conditions), leaving more than 
15,600 profiles for GSW verification. The parameters in the GSW algorithm are 
estimated for 8 different classes of total column water vapour (W), up to 6 cm, and for 
16 classes of SZA, up to 75o, ensuring that all ranges of atmospheric attenuation within 
the thermal infrared are covered.. In order to ensure that all W and SZA class have 
enough representative cases to provide robust parameter estimations, the radiative 
transfer simulations are performed over the 77 atmospheric profiles with the following 
settings: (i) surface temperature ranging between Tskin–15 and Tskin+15 K in steps of 

5K; (ii) channel emissivities of IR108 and IR120 (ε108 and ε120, respectively) covering 

the range 0.96<ε120<0.995 in steps of 0.0175 and ε120-0.030<ε108<ε120+0.018 in steps of 

0.006 (excluding cases with the average of ε108 and ε120 below 0.94); and (iii) SZA 
ranging from nadir to 75o in steps of 5o. It is worth noting that the whole simulations 
cover a range of Tskin between 230 K and 341 K, and a range of [Tskin minus T2m] 
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from -20 to +33 K. The number of different atmospheric and surface profiles obtained 
by exhausting all the combinations of surface temperature, channel emissivities, and 
SZA are 189728, yielding an equal number of radiative transfer simulations. 
 
 

2.3. Radiative Transfer Simulations 

 
The MODerate spectral resolution atmospheric TRANSsmittance algorithm 

(MODTRAN4) (Berk et al., 2000) provides a useful tool to quantify the radiation 
emitted by the surface within known atmospheric conditions that reaches a sensor 

operating in a specific spectral band. The radiance (Lν) is estimated using MODTRAN4, 
for the bands corresponding to IR108 and IR120 channels, with a spectral resolution of 

1 cm-1. The integration of Lν weighted by the i-th channel response function φi,ν, (see 
Fig. 1) provides channel i effective radiance: 
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∫
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where νi,1 and νi,2 are the lower and upper wavenumber boundaries of the channel, 
respectively; the integrals in (1) are estimated taking into account the full tabulated 

values of the response function φi,ν, i.e., between ν1 = 781.25 cm-1 and ν2 =1136.36 cm-1, 

for channel IR108, and between ν1 = 714.28 cm-1 and ν2 = 1000.00 cm-1, for channel 
IR120. 
 

The simulated SEVIRI radiances for channel i, Li, are then converted to 
equivalent black-body brightness temperatures (Tbi) following the analytic formulation 
based on the Planck function (Schmetz et al, 2002c): 
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where νi,c is channel i central wavenumber (Table 1), C1=2hc
2 and C2=hc/k (h is the 

Plancks constant, c the speed of light and k the Boltzmann constant). The parameters αi 

and βi, shown in Table 1 for MSG-1 and MSG-2, are band-correction coefficients, 
adjusted to SEVIRI ground characterization data. The simulations of IR108 and IR12.0 
brightness temperatures are then performed for both MSG-1 and MSG-2, for the whole 
database (calibration and verification subsets) described in the previous sections.  
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Table 1 Central wavenumber and band-correction coefficients for SEVIRI thermal windows 

channels onboard MSG-1 and MSG-2, respectively (http://www.eumetsat.int). 

MSG1 MSG2 
Channel νc (cm-1) α  β (K)] νc (cm-1) α  β (K) 

IR108 930.647 0.9983 0.625 931.700 0.9983 0.640 

IR120 839.660 0.9988 0.397 836.445 0.9988 0.408 

 

3. The Land-SAF LST Algorithm  

3.1. Generalized Split-Windows  

 
Several algorithms have been proposed to retrieve LST from remotely sensed 

thermal infrared data, e.g., Prata (1993), Dash et al. (2002), Sun and Pinker (2003), 
Sobrino and Romaguera (2004), Jiménez-Muñoz (2006), Coll et al., (2006), Yu et al. 
(2008) , Jiang amd Li (2008). The Land-SAF LST (Trigo et al., 2008b) is estimated 
using a Generalized Split-Window (GSW) algorithm with a formulation similar to that 
first proposed by Wan and Dozier (1996) for AVHRR and MODIS. Thus, LST is as a 
function of TOA brightness temperatures of SEVIRI IR108 and IR120 (T10.8 and T12.0, 
respectively): 
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where ε is the average of the two channels surface emissivities, ∆ε their difference (ε10.8 

- ε12.0), while Aj, Bj, (j = 1,2,3) and C are the GSW coefficients obtained by fitting 

equation (3) to the calibration data described above, and ∆LST is the model error; for 

each class of water vapour W and SZA Ψ, a set of coefficients Aj, Bj, C is inferred by 

minimizing the the l2-norm of the model error ∆LST. The GSW algorithm is applied to 
clear sky pixels only. In the Land-SAF, cloud removal is performed using the software 
developed by the Nowcasting (NWC) SAF, which is based on multispectral threshold 
technique applied to visible, near-infrared, and thermal atmospheric window channels 
within SEVIRI, for each pixel of the image (Derrien and Gléau, 2005; NWC-SAF, 
2007). An identical approach is used for AVHRR, where T10.8 and T12.0 are replaced by 
the brightness temperatures of channels 4 and 5. 

 
A relevant factor in the selection of the algorithm was its expected reliability for 

operational LST retrievals, both in terms of expected accuracy and timeliness 
considering the high (15-minute) generation frequency of SEVIRI LST fields. The latter 
favours the use of semi-empirical relationships between LST and TOA brightness 
temperatures, which are computationally efficient and free of the convergence problems 
of direct emissivity and temperature retrieval methods (e.g., Faysash and Smith, 1999) 
associated to the non-linearity of the inverse problem in remote sensing (e.g.,Rodgers, 
2000). Recent studies have assessed the use of other window channels along with the 

split-windows IR108 and IR120, such as the infrared bands centred on 3.9 and 8.7 µm 
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(IR39 and IR87; Sun and Pinker, 2007; Pinker et al., 2007). There are, however, several 
caveats regarding the use of those extra channels for LST operational retrievals, namely: 
(i) the uncertainty of surface emissivity within IR39 and IR87 is considerably higher 
than that of channels IR108 and IR120, particularly over semi-arid regions, which cover 
a considerably area within the Meteosat disk (Trigo et al., 2008a); (ii) channel IR87 has 
a rather low dynamic range of 300K, which limits its use over very warm surfaces 
where measurements will be close to sensor saturation; (iii) solar contamination of 
daytime IR39 radiances would also need to be taken into account.  

 
The error characterization of LST retrievals is an important component of the 

operational algorithm, and an important source of information for users. In this sense, 
points (i) and (ii) mentioned above constitute the major limitation to a “four-channel” 
methodology, one by increasing the retrieval error bars, and the other by adding the 
uncertainty of the radiometer behaviour close to saturation. 
 

 

3.2. Calibration/Validation of the GSW Algorithm 

 

The GSW parameters Ai, Bi, and C obtained by fitting equation (3) to the 
calibration dataset and the variance of LST explained by the regression are 
schematically shown in Figure 2. The coefficients vary fairly smoothly throughout the 
W and SZA classes, except for cases where very moist atmospheres are observed with 
high zenith angles. In such conditions the linear combination of the split-window 
channels cannot reproduce the non-linear path length effects. As a result, the explained 
variance of surface temperature by TOA brightness also reaches considerably lower 
values (below 90%; bottom right panel in Figure 2) and GSW errors increase 
substantially.  

 
The GSW algorithm is verified against the independent subset of simulated TOA 

brightness temperatures (which excludes the calibration data). Figure 3 shows the GSW 
LST model error distribution within each class of W and SZA. Classes with root mean 
square error (RMSE) higher than 4K are omitted. These classes correspond to cases 
where the explained variance of the GSW within the training dataset is less than 93%, 
and where errors of 10K or more are commonly obtained within the verification 
database. Thus, we limit the operational production of LST to SZA below 67.5 when W 
is 3 cm or higher, and to SZA below 62.5 when W is 4.5 cm or higher.  

 
The overall bias and RMSE of the GSW are 0.05K and 0.78K, respectively. As 

shown in Fig. 3, the retrieval errors tend to increase with both SZA and W. The RMSE 
is always below 2K for water vapour content and angles within the range of values 
admissible for Land-SAF LST estimations, with the exception of (i) W above 5.25 cm 
and SZA higher than 57.5o; and (ii) W above 2.25 cm and SZA higher than 72.5o where 
the GSW presents RMSE of the order of 3K. 
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Figure 2  Distribution of the GSW parameters (indicated in the top of each panel) and explained variance of the fitted regression (bottom left) as a function of the satellite 

zenith angle and total column water vapour (mm).  
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Figure 3 Distribution of LST errors obtained for the GSW verification database, which are 

obtained for different classes of Satellite Zenith Angle (indicated in the bottom left of each panel) 

and water vapour content (W; x-axis in each diagram). The lines within each boxplot correspond to 

the lower quartile, median and upper quartile, respectively, while the whiskers extend to remaining 

data. 

 
 

4. Error Propagation 

 
In a real scenario, we do not have access to the exact GSW 

inputs ),,,( 0.128.100.128.10 εεTTX =  and ),( Ψ= WY , but only to inaccurate inputs, which 

we denote by )ˆ,ˆ,ˆ,ˆ(ˆ
0.128.100.128.10 εεTTX =  and )ˆ,ˆ(ˆ Ψ= WY . Therefore, if we still infer the 

LST according to model (3) replacing the exact GSW inputs with the inaccurate ones, 

we have a new source of error on the top of the fitting error LST∆  shown in Figure 3. 
In the current section, the main errors sources are identified and their impact on the total 
LST error estimated. 
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Potentially, all inputs may introduce errors in retrieved LST values. However, 
here we only consider the radiometric noise, the uncertainty in surface emissivity and 
errors in W forecasts. The rectification of the satellite data from the real position to 0o 
longitude may introduce errors in the determination of the SZA class. We have opted to 
ignore the impact of these errors on the overall LST error, taking into account that: (i) 
the probability of having the wrong class of SZA for MSG is fairly low, and very 
unlikely to be missed by more than one class; (ii) the extra GSW error induced by the 
wrong categorization of SZA by one class is negligible for low SZA and generally 
lower than 0.8K, for high SZA (above 60o).  

 
The misclassification of cloudy pixels as clear sky would have very high impact 

on the retrieved LST. According to validation results of the NWC SAF cloud mask for 
SEVIRI, the expected rate of missed clouds is of the order of 4% (Derrien and Gléau, 
2005; NWC SAF, 2007). These missed cases often correspond to broken clouds or cases 
in neighbouring cloudy pixels. It is very difficult to propagate the uncertainty in cloud 
identification to LST error bars. Instead, LST retrievals over neighbouring cloudy pixels 
are flagged. 

 
 

4.1. Framework 

 

Let us define the vector of model coefficients ),,,,,,( 321321 CBBBAAA=θ . 

Notice that, the vector θ  generated by the fitting process is a function of water content 

and view angle, i.e., )(Yθθ = . Consider the LST estimator )ˆ,ˆ(ˆ θXfTSL =  where 

)ˆ(ˆ Yθθ =  and ),( θXf  is the LST estimate given by model (3). A characterization of 

the model error is given by: 
 

( )
2/1

2
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 −= YXLSTXfESLST θ     (4) 

where [ ]YXE ,|⋅  stands for mean value conditioned to X  and Y ; i.e., for a given GSW 

input X ,Y  , we want to compute the RMSE of the LST estimate. Using the fact that 

LSTXfLST ∆+= ),( θ  and assuming that [ ] ),(,|)ˆ,ˆ( θθ XfYXXfE = , we may write: 
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where we have assumed that the components of X , Y are mutually independent and 

that ( )[ ] 0|ˆ =− XXXE ii  and ( )[ ] 0|ˆ =− YE ii θθ . Next, we study in detail the error due 

to each individual GSW input. 
 
 

4.2. Impact of Sensor Noise  

 
The expected radiometric noise of SEVIRI channels IR108 and IR120 onboard 

MSG-2 is K11.0
108

=
T

σ  and K16.0
120

=
T

σ , respectively. The associated LST 

uncertainty is then 
2

120
2

108
2
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=    (8) 

 
Figure 4 shows the distributions of errors attributed to the impact of sensor 

noise, STb, grouping all possible SZA within different ranges of W. STb. is generally 
bellow 0.75K, and increases with the atmospheric water content. The larger variability 
within the moister atmospheres (bottom panel in Fig.4) is largely associated to non-
linear effects on the atmospheric path for high SZA. In the most extreme cases, with W 
higher than 3 cm, STb is higher than 0.5 K and may reach values above 2K. 

 

 
Figure 4 Histograms of LST errors (K) attributed to the sensor noise, obtained for different classes 

of total column water vapour; from top to bottom: 0 – to – 1.5 cm; 1.5 – to – 3.0 cm; 3.0 – to – 4.5 

cm; and 4.5 – to – 6.0 cm. 
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4.3. Impact of uncertainties in Surface Emissivity 

 
The impact of uncertainties in surface emissivity for channels IR108 and IR120, 

108εσ and 
120εσ , respectively, on LST is given by: 

 
222

120108 εεε SSS +=      (9) 

where 
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∂

∂
=

f
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Emissivity retrievals are based on the so-called Vegetation Cover Method 

(Caselles and Sobrino, 1989; Peres and DaCamara, 2005), where effective channel 
emissivity for any given pixel is estimated as a weighted average of channel emissivities 
of dominant bareground and vegetation types within the scene. Furthermore, it is 
considered that SEVIRI pixels may include a land, FLand, and and an in-land water 

fraction (1 – FLand), and thus the effective pixel emissivity, εeff_IRn, is given by: 
 

εLAND_IRn = εveg_IRn FVC + εbg_IRn (1 – FVC)    (11a) 

εeff_IRn = εLAND_IRn FLand + εWATER_IRn (1 – FLand)   (11b) 
 

where FVC is the pixel fraction of vegetation cover and εveg_IRn, εbg_IRn, εWATER_IRn are 
the vegetation, bareground, and water emissivities, respectively, for the split-window 

channel IRn. The values for εveg_IRn and εbg_IRn are available from look-up-tables (Table 
2), determined for the land cover classes within the IGBP (Belward, 1996) database 

(Peres and DaCamara, 2005); in the case of inland water, εWATER_IRn is set to the Water 
Bodies values detailed in Table 2. Channel emissivity is currently estimated from FVC 
retrieved by the Land-SAF from SEVIRI/Meteosat (Garcia-Haro et al., 2005), and 
corresponds to 5-day composites updated on a daily basis. 
 

The uncertainties in retrieved emissivity are thoroughly discussed in (Trigo et al, 
2008a). These take into account inaccuracies in the VCM inputs (of the order of 0.1 for 

FVC; IGBP-class dependent in the case of εveg_IRn and εbg_IRn), and errors in the 
approximation made by equation (11), which ignores the effect of multiple reflections 
within the canopies/ground. A further source of emissivity errors relies on the 
classification of each SEVIRI pixel into one of the two categories: “land” with FLand = 
1; or “water” with FLand = 0. To take this into account in the estimation of emissivity 
uncertainty, we assume an average error of 0.20 in FLand; in coastal pixels, this 
uncertainty may reach 0.45. 

 

Error bars of channel emissivity, ∆ε108 and ∆ε120, are estimated operationally 
along with the emissivity values themselves, and later used for LST error bars. Here, we 
assess the impact of emissivity uncertainties on LST, prescribing a fixed FVC 
characteristic of each IGBP land cover (Table 2), and thus assigning to every profile in 

the SeeBor verification database a value of ε108, ε120, ∆ε108 and ∆ε120 (Table2). On 
top of this, we assume FLand equal to 0 or 1, but prescribing an uncertainty of 0.2, i.e., 
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for “land” pixels FLand may range from 0.8-to-1, while for “water pixels” FLand lies 
between 0 and 0.20. Figure 5 shows the results obtained for different ranges of total 
column water vapour. As expected, the sensitivity to land surface emissivity is 
significantly higher for drier atmospheres, since under moist conditions the impact of 
emissivity on the surface emitted radiance is partially compensated by an opposite effect 
on the (higher) atmospheric radiation reflected by the surface (Trigo et al., 2008a). 

Moreover, the higher values of ∆ε108 and ∆ε120 are often found in (semi-)arid regions 
(see Barren Sparsely Vegetated, Savanna, or Woody Savanna land cover types in Table 
2), leading to LST inaccuracies of 1 K or more under dry conditions (W below 1.5 cm). 
In contrast the impact on LST is always below 2K for the moister atmospheres (W > 4.5 
cm). 

 
 

 
Figure 5 As in Figure 4, but for errors in LST (K) attributed to uncertainties in surface emissivity. 

 
 

4.4. Uncertainties in forecasts of atmospheric water vapour content 

 
According to the equation (6), the error due to uncertainties in the water vapour 

content is given by: 

∑ 
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where  
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     (13) 

Since we neglect the uncertainty in the SZA Ψ , let us focus out attention on W. Given that 

θ̂  is a piece-wise linear function, we have  
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( ) ( ) )|ˆ()(ˆ|ˆ 222 WRWPRWE k

k

jkjjjj
∈−=





 −= ∑ θθθθσθ

  (14) 

 

where 
kR  is the region of the water vapour domain where the k-th linear model is 

assumed. Therefore the sets 
kR are a partition of the referred to domain. 

The operational use of the GSW algorithm (3) to retrieve LST from SEVIRI 
makes use of forecasts of total column water vapour (W) provided by the European 
Centre for Medium-range Weather Forecasts (ECMWF), for parameter selection. To 
characterize W error statistics, we compared ECMWF W forecasts (with forecast steps 
ranging between 12 and 36 h) with the respective analysis, for the 15th of each month 
during 2007; ECMWF grid points with model cloud cover higher than 10% were 
excluded. The histograms of the difference between forecasts and analyses are shown in 
Figure 6, for different classes of TCWV. Forecast errors could also be assessed through 
a comparison with observations, e.g. radiosondes, however, here we consider the model 
analysis to correspond to the best estimate of the state of the atmosphere at any given 
time. The recent evolution of assimilation techniques and assimilated data – including 
both conventional data such as radiosondes, and remote sensing – contributed to a 
significant improvement of ECMWF model analysis of water vapour content 
(Andersson et al., 2005). As a consequence, the bias of ECMWF humidity analysis has 
decreased significantly, supporting the use of analysis fields as reference for the 
estimation of forecast errors. Moreover, the procedure described here can also be easily 
reproduced whenever changes to ECMWF model justify a re-assessment of W forecasts. 
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Figure 6 Histograms of W errors (cm) – difference between forecasts and the respective analysis – 

for different classes of total column water vapour; from top to bottom: 0 – to – 1.5 cm; 1.5 – to – 3.0 

cm; 3.0 – to – 4.5 cm; and 4.5 – to – 6.0 cm. 

The comparison between W forecasts and analysis (the reference value) allowed 

us to estimate the probability ( )ji WWP |ˆ , i.e., the probability that Ŵ  belongs to the 

water vapour content class iW , given that the true class is jW . This probability is then 

used to compute the expected LST error, according to the expressions (12) to (14). 

Figure 7a shows shaded values of ( )WWP |ˆ  superimposed on contours of LST errors 

associated to Ŵ  forecast errors, i.e., to the wrong choice of GSW parameters. The 
estimated errors of LST retrievals associated to total column water vapour uncertainties, 
which are obtained through the application of equations (12)-(14) to all possible classes 
of W and SZA, are depicted in Figure 7b. These are generally below 0.2 K for dry-to-
moderately moist atmospheres. Higher values occur only for W above 5.25 cm. 
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Figure 7 (a) Probability (shaded boxes) of a reference value W (horizontal axis) being forecast as 

W_Estimate (vertical axis), and LST errors (contours; K) associated to W forecast errors, for all 

possible SZA up to 77.5
o
; (b) contours of errors of LST retrievals obtained for all admissible classes 

of water vapour (W) and satellite zenith angle (SZA), taking into account the statistics of ECMWF 

forecast errors for W. 

 

 

4.5. Uncertainty of LST Retrievals 

 
The estimation of LST error bars, SLST, assumes that all sources of errors 

described in the previous sections are independent: 
 

 2222 LSTSSSS WTbLST ∆+++= ε     (15) 

 
Figure 8 shows histograms of LST uncertainties for four non-overlapping ranges 

of W. These were obtained for “LST retrievals” computed for the validation dataset 
described in section II.B and taking into account the uncertainties of the different input 
variables, as discussed above. Dry atmospheres present the widest range of SLST. In such 
conditions, the total error depends essentially on emissivity uncertainties and to a lesser 
extent on the view zenith angle. Nevertheless, SLST distributions tend to be shifted to the 
right with total water vapour content, i.e., LST error bars increase for higher optical 
depths. 
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Figure 8 Histograms of LST uncertainties [K] including all sources of errors grouped by W. 

 
 

5. Concluding Remarks 

 
The Generalised Split-Window (GSW) algorithm is a semi-empirical algorithm 

that allows the estimation of LST from top-of-atmosphere brightness temperatures of 
two adjacent channels within the atmospheric window part of the spectrum, assuming 
the channel surface emissivities are known. A version of the GSW was trained for the 
series of Meteosat Second Generation (MSG) satellites and is currently used for 
operational retrievals of LST by the Land-SAF. To maximize the algorithm 
performance over a wide range of conditions, the GSW parameters are tuned for classes 
of satellite view angle and total column water vapour (Wan and Dozier, 1996).  

 
A reliable estimation of the uncertainty of remote sensing retrievals is often 

essential for the optimal use of the retrieved parameter. This work focuses on the 
quantification of error bars associated to LST estimations from SEVIRI/MSG through a 
careful characterization of: (i) the uncertainty of the GSW algorithm itself, which is 
highly dependent on the retrieval conditions – view angle and atmospheric water vapour 
content; (ii) the uncertainty of the input variables and their propagation through the 
GSW algorithm. For the latter, we take into account the expected sensor noise for the 
SEVIRI window channels onboard the MSG series, the error bars of surface emissivity 
retrievals (discussed in Trigo et al., 2008a) and forecast errors of total column water 
vapour (W). Since the GSW is applicable to clear sky pixels only, the misclassification 
of a (partially) cloud-covered scene would lead to erroneous LST values. The resulting 
error is difficult to estimate a priori, as it depends on, e.g., the extent of the cloud cover, 
or cloud top height. Considering that the overall performance of the cloud mask used is 
fairly good (Derrien and Gléau, 2005), the LST error bars do not take into account the 
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uncertainty of the pixel classification, but instead the cloud mask confidence is made 
available to the user through the LST quality flag. 

 
Satellite zenith view angle (SZA) and W are implicit input variables for LST 

retrievals, in the sense that their values are used to determine the best set of GSW 
parameters (Ai, Bi, and C in equation (3)). The uncertainty of ~1/3 pixel in the 
geolocation of level 1.5 SEVIRI data has a marginal effect on LST error bars, since only 
pixels with SZA close to the upper/lower limits may risk being misclassified to a 
neighbouring SZA class. The probability of choosing inappropriate GSW parameters 
due to a misclassification of W is estimated from error statistics of humidity forecasts of 
the current version of ECMWF model; the procedure described in the current work can 
easily be duplicated for future model releases. Such probability is then combined with 
the results of a sensitivity analysis of the GSW to estimate their contribution to LST 
error bars. 

 
 

 
 

Figure 9 (a) LST (ºC) retrievals for the 7:15 UTC time-slot of the 23
rd

 March 2008 and (b) 

respective error bars (ºC); the diamonds show the relative contribution of uncertainty in emissivity 

(“north”), water vapour content (“east”), sensor noise (“west”) and uncertainty in the GSW 

associated with specific retrieval conditions (“south”). 

 
 
 
The spatial coverage of LST retrievals from SEVIRI/MSG data presented here is 

then essentially based on the respective uncertainty, in contrast with most (split-
window) algorithms for LST, where estimations are restricted to SZA below a fixed 
threshold (often ~60º; e.g., Wan and Dozer, 1996; Sun and Pinker, 2003). Within the 
MSG disk the atmosphere is often fairly dry for clear sky conditions and for relatively 
large (~60o – 70o) SZA, partially compensating for the poorer performance of the GSW 
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algorithm due to the long optical path. Figure 9 presents one such example, where parts 
of Northern Europe, the Middle East and Saudi Arabia, which are cloud free, present a 
relatively low atmospheric water vapour content, which allow the estimation of LST 
with a reasonable degree of accuracy. The far west region of Southern America is also 
viewed at relatively high angles as the above-mentioned areas, but presents a much 
higher atmospheric humidity, which would lead to meaningless retrievals of LST. Thus, 
the analysis of the various error sources of remotely sensed LST allows the 
maximization of the product spatial coverage. In the case of LST estimation provided 
by the Land-SAF, LST fields are distributed along with realistic estimations of the 
respective error bars on a pixel-by-pixel basis, allowing users to make the ultimate 
decision on the applicability of the retrieved product. 
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