

Land Surface Temperature LSA SAF Operational Products

LSA SAF LST Team: I. F. Trigo, S. C. Freitas, C. C. Dacamara, S. Ermida, C. Barroso, F. Göttsche, F. Olesen

Algorithm Generalized Split-Window

MSG/ SEVIRI & AVHRR/Metop

Two-Channel \rightarrow 10.7 μ m & 12.0 μ m $LST = (A_1 + A_2 \frac{1-\varepsilon}{\varepsilon} + A_3 \frac{\Delta \varepsilon}{\varepsilon^2}) \frac{T_{10.8} + T_{12.0}}{2} +$ $(B_1+B_2\frac{1-\varepsilon}{\varepsilon}+B_3\frac{\Delta\varepsilon}{\varepsilon^2})\frac{T_{10.8}-T_{12.0}}{2}+C$

Parameters A_k, B_k & C depend on:

Column Water Vapo From Numerical Weather Prediction Models (ECMWF)

Satellite View Angle

(Generalized Split Window developed for MODIS and adapted to SEVIRI-MSG – Freitas et al., 2010)

LST Uncertainty

$$S_{LST}^2 = \sum_i \Biggl(\frac{\partial f}{\partial X_i}\Biggr)^2 \sigma_{X_i}^2 + \sum_j \Biggl(\frac{\partial f}{\partial \theta_j}\Biggr)^2 \sigma_{\theta_j}^2 + \underbrace{\Delta LST^2}_{\text{Algorithm uncertainty}} \text{[depend on retrieval conditions} \rightarrow \text{total optical path]}$$

$$- \text{Errors in algorithm parameters [depend on implicit input variables} \rightarrow \text{column water vapour; view angle; land cover]}$$

$$- \text{Errors in explicit algorithm inputs [sensor noise; emissivity]}$$

SEVIRI 15 min Product

Land Surface Temperature

Uncertainty

AVHRR/Metop

SEVIRI/MSG

Nadir pixel sampling distance: 3km

Available since 2012 (internal) 30-daily maximum / median Available since 2012 (internal)

Nadir pixel sampling distance: ~1.1 km
 Twice-daily;
 Available since 2015
 Earlier data on demand

Re-processment in 2015: 2004 – 2012 using current LST Alogrithm 10-daily maximum / median

Validation

- Comparison against in situ (reference) data Comparison with similar products from other sensors for consistency assessment purposes and complementary to ground data.

In Situ Measurements Evora, Southern Portugal: Oak Trees

Radiometric temperature (°C) at Évora in a summer day: sunlit ground (red dots); free canopy (green docs); shaded ground (black dots). The near Surface air temperature is also

Idealized single tree view at Évora: Nadir & SEVIRI view at different local times in July

Geometric Model – To

Boolean model – To derive overlap probabilities and the actual fraction of each end-member

Validation - Upscaling issues are more easily solved in areas with more homogeneous landscapes; see LST validation with desert station in Gobabeb (Goettsche et al., 2013).

SEVIRI LST (y-axis) versus ground estimates (x-axis) obtained using the geometric model of Evora site and measurements of sunlit/shaded ground and tree canopy.

SEVIRI vs In situ Bigs / Standard Deviation of differences (°C)

	Daytime	Night-time
Upscaling: Simple averga of in situ measurements	-1.2/2.2	-0.1/1.2
Upscaling: Geometric Model	0.5/1.4	0.1/1.2

Comparison with other Satellite Products:

NOAA Land Surface Temperature Product (http://viirsland.gsfc.nasa.gov/Products/LSTEDR.html) Collocated in time and space with SEVIRI LST:

VIIRS and SEVIRI LST(°C) collocated in space & time, averaged over 1-9 Aug 2013: VIIRS night-time (top) and daytime (bottom) overpass.

Mean difference of VIIRS LST minus SEVIRI LST (circles) and its standard deviation (vertical bars), for the period 1-to-10 August 2013 (left) and 1-10 January 2014 (right), over the Iberian Peninsula. Upper/lower panels show night-lime/daytime differences. The statistics are shown for classes of VIIRS zenith angle. Higher surface heterogeneity during summer leads to a strong dependency of product differences on viewing geometry.

		1-9 August 2013		1-9 January 2014	
_		Bias (°C)	RMSD (°C)	Bias (ºC)	RMSD (°C)
Night-time Daytime	Night-time	+ 0.26	1.55	- 0.15	2.16
	Daytime	- 2.95	4.76	- 2.02	2.81

VIIRS and SEVIRI LST(°C) collocated in space & time, averaged over 1-9 Jan 2014: VIIRS night-time (top) and daytime (bottom) overpass

- Ermida, S. L., I. F. Trigo, C. C. DaCamara, F. M. Göttsche, F. S. Olesen, G. Hulley, 2014: Validation of remotely sensed surface temperature over an oakwood landscape The problem of viewing and illumination geometries. Remote Sens. Env., DOI:10.1016/j.rse.2014.03.016.
 Freitas, S. C., Trigo, I. F., Bioucas-Dias, J. M., Goettsche, F.-M., 2010: Quantifying the Uncertainty of Land Surface Temperature Retrievals From SEVIRI/Meleosat, IEEE Trans. Geosci. Remote Sens. DOI: 10.1109/TGRS.2009.2027697.
 Goettsche, F.M., F.S. Olesen, A. Bork-Unkelbach (2013): Validation of land surface temperature derived from MSG/SEVIRI with in situ measurements at Gobabeb, Namibia, Int. J. Remote Sens. DOI: 10.1080/01431161.2012.716539