

Land Surface Analysis (LSA SAF)

Pedro Viterbo

Instituto de Meteorologia, Lisboa, Portugal

Acknowledgments: Isabel Monteiro, Isabel Trigo, Luís
Pessanha

- Introduction
- Land Surface Analysis SAF and its services
- Cooperation activities: Existing, planned and potential
- User services and training
- Overall operations architecture
- LSA SAF and MTG
- LSA SAF and climate
- Conclusions

- Introduction
- Land Surface Analysis SAF and its services
- Cooperation activities: Existing, planned and potential
- User services and training
- Overall operations architecture
- LSA SAF and MTG
- LSA SAF and climate
- Conclusions

LSA SAF: The brief

- Develop techniques that allow an effective use of MSG and EPS data related to:
 - LAND
 - LAND-ATMOSPHERE Interactions
 - BIOSPHERIC Applications
- Timely provide:
 - Products
 - User support

Land SAF Chronogram

The Land SAF Consortium

- Instituto de Meteorologia (IM), Portugal
- Meteo-France (MF), France
- Royal Meteorological Institute (RMI), Belgium
- Finnish Meteorological Institute (FMI), Finland
- IMK, University of Karlsruhe
- IDL, University of Lisbon
- UV, University of Valencia
- Organisation principles
 - Algorithms developped at one of the participating Institutes
 - Algorithms handed over to IM for integration and production

- Introduction
- Land Surface Analysis SAF and its services
- Cooperation activities: Existing, planned and potential
- User services and training
- Overall operations architecture
- LSA SAF and MTG
- LSA SAF and climate
- Conclusions

Land SAF MSG products

Surface Radiation

Surface Water Balance

LST

↓LongWave Flux

Albedo

↓ShortWave Flux

Vegetation

Fraction Veg Cover

LAI

FAPAR

Snow Cover

Evapotranspiration

Wild Fires

Fire Detection

Fire Radiative Power

Fire Risk (Europe)

SEVIRI/Meteosat

Product characteristics

- All products have a quality flag field associated
- 4 production areas for MSG
 - Europe
 - N. Africa
 - S. Africa
 - S. America
- SEVIRI resolution
- Variable time resolution
 - 15 min to 10 days
- EPS products generation started

Surface Radiation Budget: Shortwave

ALBEDO

Daily, 10-daily composites

Downwelling SW Flux

Every 30 min

Surface Radiation Budget: Longwave

Surface Temperature

Every 15 min

Downwelling LW Flux

Every 30 min

Vegetation and wildfire parameters

- Fraction of Vegetation Cover
- Leaf Area Index
- fAPAR
- Fire detection
- Fire Radiative Power
- Fire Risk

July 2007

Water balance

Snow Cover

Evapotranspiration

EPS products

16 Dec 2007 09 UTC

LST

15 Dec 2007 09 UTC

DSLF

- Introduction
- Land Surface Analysis SAF and its services
- Cooperation activities: Existing, planned and potential
- User services and training
- Overall operations architecture
- LSA SAF and MTG
- LSA SAF and climate
- Conclusions

Cooperation activities

- Cooperation with other SAFs
 - Shared validation of fluxes with CM and OSI SAF
 - Use of other SAFs' parameters to improve LSA SAF products (e.g., H-SAF soil moisture to improve LSA SAF ET)
- Cooperation with MPEF
 - Production of Fire Radative Power, developed at EUMETSAT HQ
 - Complementary of the other Fire products in the LSA SAF portfolio
 - Demonstrated flexibility of overall software architecture
- Geoland-2 (FP7 project to start 4Q08): LSA SAF partners are consortium members
- Work closely with key users
 - JRC (agrimetereological applications, VEGA intercomparison)
 - African targeted applications
 - Need for specific product development with key African users
 - Targeted training

Fire Radiative Power: Summer 2007, Greece

Geoland-2 products

- Albedo AL
- Downward surface fluxes:
- Downward Short-wave Radiation
- Downward Long-wave Radiation
- Land Surface Temperature LST
- At T0, our contribution to geoland-2 will be exactly the corresponding LSA SAF products

Independent Validation: EOLAB

Participation at geoland-2: Coverage

Global

Constellation of GEO

High Spatial Resolution

Merge GEO and LEO

GEOSYNCHRONOUS WEATHER SATELLITE COVERAGE TO LIMB

GOES-9 GOES-8 Meteosat FY-2 GMS-5

- GOES (USA), GMS (Japan), and FY(China) have open reception and distribution via NASA-funded internet.
- METEOSAT (Europe), through NOAA, requires license to decrypt and limits distribution for 3 days after observation.

- Introduction
- Land Surface Analysis SAF and its services
- Cooperation activities: Existing, planned and potential
- User services and training
- Overall operations architecture
- LSA SAF and MTG
- LSA SAF and climate
- Conclusions

The user feedback loop

- Users (> 100)
 - Numerical Weather Prediction
 - Update parameters, Assimilation & Forecast Verification (ECMWF, MF, INM, IM, ...)
 - Agriculture & Forestry (JRC)
 - Research (e.g. AMMA, U. Leicester, U. Wisconsin)
 - Hydrology (U. Firenze, MIT)
 - Environmental Monitoring (geoland/GMES)
 - **(...)**
- Help desk
- Regular workshops (2002, 2004, 2006, 2008) for user feedback and evolution of user requirements

Questionnaire to users: Spring 2008

- A questionnaire was sent to all external registered users (336)
 - Sent on 14 April; closed 15 May
 - Weekly reminders were sent
- 49 (15%) responded to the survey
- Currently, our users are mainly interested in MSG data

3rd Land SAF User Workshop, Lisboa, Portugal

Current use of Land SAF data

Critical elements to use Land SAF data

Applications of Land SAF products

Geographical area and time frequency

- Introduction
- Land Surface Analysis SAF and its services
- Cooperation activities: Existing, planned and potential
- User services and training
- Overall operations architecture
- LSA SAF and MTG
- LSA SAF and climate
- Conclusions

LSA SAF operational system

Centralized at IM

- Algorithm Code delivered by R&D Team
 - Algorithm Plugging Interface Document
 - Fortran90, C
 - System algorithm interfaces
 - Pre- & Post-processing by IM
 - Satellite data
 - NWP & Static fields
 - Re-projection

Operational system

EUMETCast

INSTITUTO DE METEOROLOGÍA

AVHRR ASCAT SEVIRI

RMDCN

ECMWF

Retrieval System

&

Pre- Processing

Product Generation

Post-Processing **NRT**

EUMETCast

UMARF

ARCHIVE

Off-Line

native formats \rightarrow HDF5

- radiances, TBs
- temporal/spatial interpolation
- cloud masking
- ...

Operational system

Clusters of Linux PCs

- Operational chains (GEO & LEO)
- Parallel chains algorithm testing
- Re-processing chain easily implemented
- Truly modular system
- Redundancy

Archiving System

- Centralised on-line storage
- Off-line Archive

- Introduction
- Land Surface Analysis SAF and its services
- Cooperation activities: Existing, planned and potential
- User services and training
- Overall operations architecture
- LSA SAF and MTG
- LSA SAF and climate
- Conclusions

LSA SAF products and MTG

- LSA SAF will use radiances from the (Full Disk) Imagery Mission, (SEVIRI follow-up)
- Better spatial resolution will be of benefit to all LSA SAF products
- Enhanced spectral characteristics vs. SEVIRI

- FD-VIS 0.4 Better aerosol, should improve AL, SW flux, but also LW

flux and LST

- FD-IR 3.8/8.5 Extended dynamical range for fire applications

- FD-IR 1.3 et al Improved cloud mask and cloud type specification

Impact on products

- All products, given better clouds
- Fire products
- AL, radiative fluxes and LST, cascading into other products (VEGA, ET)
- More competitive VEGA products with enhanced spatial resolution

- Introduction
- Land Surface Analysis SAF and its services
- Cooperation activities: Existing, planned and potential
- User services and training
- Overall operations architecture
- LSA SAF and MTG
- LSA SAF and climate
- Conclusions

Climate use of LSA SAF products

- Many current users (e.g., agrometeorological applications) of ALL products would prefer to have anomalies (implying climate-like products)
 - Can this be addressed by calibration based on seasonal cycle and/or interannual variability?
- Products not covered by CM SAF
 - LST, SC, VEGA, Fire Products, ET
- Identifying user needs
 - Length of period required
 - Stability of algorithm version
 - Spatial coverage
 - **Next ERA (ERA-70)?**
- Identifying system needs
 - New "reanalysis" operational chain
 - Archive (be aware of multiple passes through the same period)
 - Dissemination in "bulk"
 - If METEOSAT 1st generation data needed, we face a challenging problem, not only of sensor intercalibration, but also product homogeneization

- Introduction
- Land Surface Analysis SAF and its services
- Cooperation activities: Existing, planned and potential
- User services and training
- Overall operations architecture
- LSA SAF and MTG
- LSA SAF and climate
- Conclusions

Summary, conclusions and perspectives

- Aalgorithm development, validation and operational production of land surface related products based on European meteorological satellites (MSG and METOP):
 - LAND
 - LAND-ATMOSPHERE Interactions
 - Land Biosphere Applications
- Outlook
 - Strenghten our links with users, with increased emphasis on collaborative efforts with key users, including targeted training efforts
 - Plan for the upcoming MTG products
 - Explore feasibility of options to deliver climate-like LSA SAF products
 - LSA SAF partners will participate in GMES land (geoland2)
- Product dissemination
 - Daily from our web site
 - http://landsaf.meteo.pt
 - EUMETCAST
- Further information
 - http://landsaf.meteo.pt