

The Land-SAF suite of Vegetation Products

- University of Valencia Remote Sensing Unit
- EOLAB

INDEX

- 1. Description of the MSG vegetation products
- 2. Validation of products
- 3. Added value and potential applications

Characteristics of SEVIRI vegetation (VEGA) products

⇒ Status: preoperational

exhaustive validation analysis, competitive against existing products

Input: BRDF parameters (AL2 product)

Frecuency of production: 1 day (time scale of 5 days)

Resolution & coverage: SEVIRI disk

3 data sets: product, error estimate and quality flag

See Detailed documents (updated)

- Product User Manual: LSA_LAND_UV_PUM_VEGA_2.1 08)
- Validation Report: LSA_LAND_UV_VR_VEGA_v2.1
- FAPAR: fraction of PAR (400-700 nm) absorbed by the canopy statistical relationship in an optimal geometry (Roujean & Bréon, 1995)

The product content

FAPAR LAI FVC SEVIRI/Meteosat-9 SEVIRI/Meteosat-9 SEVIRI/Meteosat-9 FAPAR 2.1 FVC LAI 070415 070415 070415 SEVIRI/Meteosat-9 SEVIRI/Meteosat-9 SEVIRI/Meteosat-9 Err(FVC) Err(LAI) ErrFAPAR 2.1 070415

Example: 15 April 2007

Input data quality

Assessment of VEGA products uncertainties

Outcomes with large errors are not given

Unacceptably large input errors: K0>0.10 k2>0.25

Blind problematic areas

Bias in the input due to unmodeled environmental factors (e.g. snow)

A "traces of snow" contition → discard unreliable inputs (prone to large errors)

Blind problematic areas

Consolidation of problematic areas

- v2.0: traces of snow were processed (and flagged)
- v2.1: unreliable pixels are not processed → clean temporal profiles

Uncertainties assessment

- Error bars provide reliable information about the accuracy level
- MSG FAPAR product fits well with the baseline products (SeaWiFS, CYC) within the error bar

Error estimate and qualiy flag of products Wintertime Europe

Hu et al. 2007:

FGROUND
$$\approx \frac{1-\alpha}{1-\alpha r^*} \exp[-G(\theta_s) \cdot LAI/\cos(\theta_s)]$$

INDEX

1. Description of the MSG vegetation products

2. Validation of products

3. Added value and potential applications

Validation of products

DIRECT VALIDATION

- VALERI global sites
- Temporal profiles (Mongu, Dahra)
- Spatial gradient along the Kalahari transect

INDIRECT VALIDATION

- Product analysis (histograms, coverage, spatial consistency, seasonality)
- Temporal analysis (dynamics, cleaness of profiles)
- Spatial and temporal consistency against reference products
 class level, regional level, pixel level (BELMANIP, MODIS ascii sites)
 statistical indicators (bias, correlation, RMS)

REFERENCE PRODUCTS

MODIS C5 -1km 8-day, monthly.

MERIS/ENVISAT-1km 10-day (MGVI & TOAVEG)

VEGETATION-SPOT-1km. 10-day (JRC, CYCLOPES)

SEAWIFS-2km. 10-day

POLDER/PARASOL-6km

Application of MERIS data to the validation of coarse resolution vegetation

ESA category-1 Research Projects Program

INDIRECT VALIDATION

Spatial consistency

FVC (all valid pixels in Europe)

FAPAR (all valid pixels in Europe)

MSG FAPAR retrievals are between MERIS estimates from MGVI and TOAVEG

MSG LAI time profiles

INDIRECT VALIDATION

Europe

- some biome-dependent differences (e.g. needle-leaf forest)
- partial coverage and higher errors for high latitudes
- stable and in good agreement with MODIS and MERIS in Mediterranean areas

Consolidated regions (Africa)

- optimal quality for all biomes
- product is available all the time, with no gaps during the growing season

Land-SAF products compare well with globally distributed VALERI insitu based maps

Data supplied by SAFARI team

- LAI and FVC describe the pattern of seasonal vegetation change observed at a Kalahari Woodland, Mongu (Zambia)
- FVC is closer than MERIS to ground measurements

Data supplied by Rasmus Fensholt team

$$FAPAR \approx 1 - exp \left[\frac{-G(\mu_0)}{\mu_0} < LAI > \right]$$

• FAPAR and LAI products follow the seasonality of the vegetation activity during 2005 and 2006 at Sahel grasslands, Dahra (Senegal).

A gradient with different shrubland/woodland structures

FVC and LAI captured the decreasing vegetation productivity along the Kalahari transect in the wet season

We conclude that Land-SAF products performed remarkably well for African semiarid grasslands, woodlands and savannas

INDEX

- 1. Description of the MSG vegetation products
- 2. Validation of products
- 3. Added value and potential applications

Compliance with the URD

Mean values over 2007

Optimal: Err(FVC)<0.10

Medium: 0.10<Err(FVC)<0.15

Low: 0.15<Err(FVC)<0.20

Unusable: Err(FVC)>0.20

Optimal: Err(FAPAR)<0.10

Medium: 0.10<Err(FAPAR)<0.15 0.15<Err(FAPAR)<0.20 Low:

Unusable: Err(FAPAR)>0.20

FURTHER ADDED-VALUE WITH REGARD TO SIMILAR PRODUCTS

Sequence of products over a 50-day period, $S_Africa (0^{\circ} S, 11.2^{\circ} E - 8.3^{\circ} S, 23.2^{\circ} E)$.

The temporal continuity and stability of LAI MSG product clearly outperforms that of MODIS collection 5 product.

Reconstruction of inter and intra-annual trajectories from time series of products

Robust Loess (Locally weighted) methods

MSG (every 2 days): reconstruction is straightforward, residual are negligible

- Robust against double-seasons false alarms
- The temporal continuity benefits the accurate retrieval of key seasonal parameters

FVC MSG time series:

- ability to generate spatially consistent images of phenology parameters
- good agreement with pattern of the intertropical convergence zone (ITCZ)

8. Concluding remarks

- . The suite of daily VEGA products provides relatively clean profiles for monitoring vegetation activity
- The product values fit well with the existing satellite products within the (reliable) error bar
- MSG VEGA products present added value against operational ones (MODIS, VGT, MERIS). In particular, due to its high spatial and temporal continuity, as well as temporal stability
- The products could meet the requirements of several communities involved in both application domains and research activities
- The Project team is willing to establish contacts with potential users to improve existing applications (Visiting Scientist planned)
- Different frequencies of production are also possible if required by the user needs

The Land-SAF suite of Vegetation Products

- University of Valencia Remote Sensing Unit
- EOLAB

