

Study of satellite observations synergy in order to improve surface temperature in NWP

Zied SASSI Zied.sassi@meteo.fr

Supervisors: Nadia FOURRIÉ, Vincent GUIDARD, Camille BIRMAN

CNRM/GMAP/OBS, Météo-France/CNRS, Toulouse, France

Joint ISWG and LSA-SAF Workshop Lisbon, 26-28 June 2018

OUTLINE

- Context of the study
- Satellite Land Surface Temperature (LST) comparison
- Validation to in-situ data
- Conclusions and perspectives

Context of the study

- Importance of the Land Surface Temperature (LST) in surface analysis and limits of its modelization
- Surface schemes use modeled LST
- Realistic LST to replace modeled LST for satellite radiance assimilation

Context of the study

- Importance of the Land Surface Temperature (LST) in surface analysis and limits of its modelization
- Surface schemes use modeled LST
- Realistic LST to replace modeled LST for satellite radiance assimilation
- Window channels for Satellites LST retrieval.
- Further application of satellites LST in surface analysis

→ Study of agreement between different sensors

Contribution profile of a water vapour absorption channel (red) compared to a window channel (blue). Credits: eumetrain/Marianne König (EUMETSAT)

Context of the study

AROME-France 3D-Var model experiments:

Operational Meso-scale Non-Hydrostatic model of Météo-France
(1h 3D-Var cycle assimilating Conventional/Satellite/Radar observations)

- Under clear-sky conditions
- Blacklisting cloud contaminated observations
- LST retrieved with the Mono-channel and known emissivity
- RTTOV 11 and emissivity atlas
- Three covered periods of a month each:

Summer: 16/06/2017 - 16/07/2017

Autumn: 01/10/2017 - 31/10/2017

Winter: 15/01/2018 - 14/02/2018

AROME-France domain (1.3 km)

Satellite LST comparison

Spinning Enhanced Visible and Infrared Imager SEVIRI

- On board MSG satellites
- Geostationary, 8 thermal Infrared channels
- 3km of spatial resolution at nadir
- Emissivity Land-SAF atlas
- **----** Channel 9 (<mark>10.8 μm</mark>) [Guedj et al. , 2011]

Infrared Atmospheric Sounding Interferometer IASI

- On board Metop-A and Metop-B
- Polar orbit, 8461 channels
- 12Km of spatial resolution at nadir
- Emissivity atlas from University of Wisconsin
- --- Channel 1194 (10.6 μm) [Boukachaba, 2017]

Advanced Microwave Sounding Unit AMSU-A

- On board Metop-A/B and NOAA satellites
- Polar orbit
- 15 microwave channels
- 48km of spatial resolution at nadir
- Emissivity of CNRM MW atlas computed by F. Karbou 2015 and refined by F. Suzat
- Channel 3 (50.3 GHz) [Karbou et al., 2006]

Advanced Microwave Sounding Unit AMSU-B

- On board Metop-A/B and NOAA satellites
- Polar orbit
- 5 microwave channels
- 16km of spatial resolution at nadir
- Emissivity of CNRM MW atlas computed by F. Karbou 2015 and refined by F. Suzat
- Channel 1 (89 GHz) [Karbou et al., 2006]

Satellite LST comparison

Spinning Enhanced Visible and Infrared Imager SEVIRI

- On board MSG satellites
- Geostationary, 8 thermal Infrared channels
- 3km of spatial resolution at nadir
- Emissivity Land-SAF atlas
- **----** Channel 9 (<mark>10.8 μm</mark>) [Guedj et al. , 2011]

Infrared Atmospheric Sounding Interferometer IASI

- On board Metop-A and Metop-B
- Polar orbit, 8461 channels
- 12Km of spatial resolution at nadir
- Emissivity atlas from University of Wisconsin
- --- Channel 1194 (10.6 μm) [Boukachaba, 2017]

Advanced Microwave Sounding Unit AMSU-A

- On board Metop-A/B and NOAA satellites
- Polar orbit
- 15 microwave channels
- 48km of spatial resolution at nadir
- Emissivity of CNRM MW atlas computed by F. Karbou 2015 and refined by F. Suzat
- Channel 3 (50.3 GHz) [Karbou et al., 2006]

Advanced Microwave Sounding Unit AMSU-B

- On board Metop-A/B and NOAA satellites
- Polar orbit
- 5 microwave channels
- 16km of spatial resolution at nadir
- Emissivity of CNRM MW atlas computed by F. Karbou 2015 and refined by F. Suzat
- Channel 1 (89 GHz) [Karbou et al., 2006]

Different sensors LST compared to SEVIRI mean LST within 4.5 Km

Bias and standard deviation of IASI to SEVIRI LST comparison

	ALL (K)			Night-time (K)			Daytime (K)		
	Bias	S	N° obs	Bias	S	N° obs	Bias	S	N° obs
90 days	0.117	2.027	142715	0.690	1.026	68237	-0.409	2.516	74478
Autumn	-0.418	2.123	55331	0.676	1.091	32252	-1.946	2.266	23079
Summer	0.803	1.958	53122	0.785	0.954	14113	0.809	2.212	39009
Winter	-0.008	1.630	34262	0.651	0.966	21872	-1.381	1.750	12390

Bias and standard deviation of IASI to SEVIRI LST comparison

	ALL (K)			Night-time (K)			Daytime (K)		
	Bias	S	N° obs	Bias	S	N° obs	Bias	S	N° obs
90 days	0.117	2.027	142715	0.690	1.026	68237	-0.409	2.516	74478
Autumn	-0.418	2.123	55331	0.676	1.091	32252	-1.946	2.266	23079
Summer	0.803	1.958	53122	0.785	0.954	14113	0.809	2.212	39009
Winter	-0.008	1.630	34262	0.651	0.966	21872	-1.381	1.750	12390

- Global agreement between IASI and SEVIRI LST with some temporal variability:
 - ▶ A better agreement during winter
 - ▶ A better agreement during night-time

Filtering coastal pixels in order to avoid contamination by oceans

Applying an emissivity threshold of 0.93 (October 2017)

Blacklisted observations

Considered observations

Correlation between AMSU-A LST and SEVIRI LST (October 2017)

Correlation between AMSU-A LST and SEVIRI LST (October 2017)

AMSU-A mean LST diurnal cycle – October 2017

Time UTC

Bias and standard deviation of AMSU-A to SEVIRI LST comparison

	ALL (K)			Night-time (K)			Daytime (K)		
	Bias S N° obs			Bias	S	N° obs	Bias	S	N° obs
90 days	0.424	4.306	273758	2.159	3.672	101984	-0.606	4.324	171774

Bias and standard deviation of AMSU-B to SEVIRI LST comparison

	ALL (K)			Night-time (K)			Daytime (K)		
	Bias	S	N° obs	Bias	S	N° obs	Bias	S	N° obs
90 days	-0.686	5.186	216644	0.762	4.790	92998	-1.775	5.206	123646

- Observation station at Toulouse Meteopole site
- Available data every 30minutes

Page 19

Surface brightness temperature issued from KT15 Infrared radiation pyrometer

KT15 Infrared pyrometer

Meteopole-Flux observation station

Toulouse Meteopole station In-situ LST

(January 01st 2017 – February 28th 2018)

Obs-SEVIRI and Obs-Guess LST statistics (October 2017)

Conclusions and perspectives

- **⇒** Global agreement between IASI and SEVIRI LST over the three studied periods
- ➤ Better SEVIRI/IASI agreement on winter and night-time
- ➤ Good correlation of IASI/AMSU-A/B LST with SEVIRI LST
- **▶** Global agreement of different sensors LST diurnal cycles compared to SEVIRI

Conclusions and perspectives

- **→** Global agreement between IASI and SEVIRI LST over the three studied periods
- ➤ Better SEVIRI/IASI agreement on winter and night-time
- ➤ Good correlation of IASI/AMSU-A/B LST with SEVIRI LST
- **▶** Global agreement of different sensors LST diurnal cycles compared to SEVIRI
- ➤ Satisfying correlation of SEVIRI LST with in-situ LST especially in summer period
- ➤ More realistic SEVIRI LST compared to guess especially in summer period and daytime

Conclusions and perspectives

- **→** Global agreement between IASI and SEVIRI LST over the three studied periods
- ➤ Better SEVIRI/IASI agreement on winter and night-time
- ➤ Good correlation of IASI/AMSU-A/B LST with SEVIRI LST
- **▶** Global agreement of different sensors LST diurnal cycles compared to SEVIRI
- ➤ Satisfying correlation of SEVIRI LST with in-situ LST especially in summer period
- ➤ More realistic SEVIRI LST compared to guess especially in summer period and daytime
- > Towards a synergy between sensors > Further use of SEVIRI LST for other sensors simulation
- **▶** Use of Satellite LST in surface analysis

Thanks for your attention

