

Yves Govaerts, EUMETSAT
Sebastien Wagner, Wagner Consulting
Phil Watts, EUMETSAT
Alessio Lattanzio, Makalumedia



## SURFACE/ATMOSPHERE RADIATIVE COUPLING

- The anisotropy of the surface BRF is due to shadowing effects resulting from the "porosity" or "roughness" of the scene.
- The magnitude of this anisotropy is controlled by the ratio between the direct and diffuse downwelling radiation, and therefore by the amount of aerosol in the atmosphere.
- Diffuse downwelling radiation tends to reduce "sharpness" of the shadow and therefore the anisotropy magnitude.

















C100\_T100\_W20\_SRF\_VGT\_L03\_Wet 0.6  $\tau_{\rm A}=~1.0$ DHR, 0.5 - MOON. - BHR\_ 监 0.4 OA BRF. 0.3 SRF BRF VISO.8 0.2 10 U TIME OF DAY 213 12 8 14 6

Slide: 8

## **OVERVIEW**

- Objective
- × Algorithm description
- Product evaluation
- Conclusions



#### **OBJECTIVE**

#### Objectives of the Land Daily Aerosol algorithm (LDA):

Derive a mean daily aerosol optical thickness at 0.55µm for various types of aerosol classes over land surfaces.

#### Aerosol above land...

How to separate the aerosol contribution from the surface one? (Simultaneous retrieval of aerosol load and the surface properties)

#### Retrieval strategy:

- Daily accumulation of METEOSAT/SEVIRI data in VIS06 / VIS08 / NIR16 (15 / 30 min resolution)
- SIMULTANEOUS retrieval over land of: mean daily AOD (550 nm) [Phase 1] Hourly (?) AOD (550 nm) [Phase 2] surface reflectance
- Inversion based on Optimal Estimation
- Update of the surface prior information, using a "memory" mechanism

Land SAF 3<sup>rd</sup> workshop 4 - June

## **OBJECTIVE: SEVIRI TRANSMITTANCE**



#### OE RETRIEVAL METHOD

- Measurement vector and error covariance matrix
- Forward model and state parameters
- Cost function
- Surface prior information update
- Quality indicator
- Aerosol class selection







#### **MEASUREMENT ERROR**

- radiometric noise
- rectification inaccuracy
- inter-band calibration error
- Forward model
- Model parameters
- Aerosol autocorrelation



Slide: 14

## **OE: MEASUREMENT VECTOR**



tion: 1 - 10%

ror: 1.5%

variation: 1-10%

error: 1%

r: 2 - 5%



## OE: MEASUREMENT VECTOR

#### Example over Dakar





Slide: 16 Land SAF 3 4 - J

## OE: Bayesian approach

#### **Bayes theorem:**



- P(x|y) Posterior PDF of the state vector x, given the measurements
- P(y|x) PDF describing the knowledge of y if the state would be x (model + measurement errors)
- P(x) Prior PDF to the state x
- P(y) Prior PDF of the measurement (constant)

**Assumption: PDFs = Gaussian distributions** 



#### OE: What now?

Goal: maximising  $P(\vec{x}|y_m)$ 

Problem equivalent to minimising a cost funtion

$$J(\vec{x})$$

Under the Gaussian assumption, and after development 
$$P_a(x) = P_b(x) = P_$$

#### Where:

Method for minimising the cost function depends on the matrix representing the "errors" related to the observations and to the problem to solve (possible presence of local minima)

Eximonte-Carlo, steepest descent, Marquardt-Levenberg, Newton, etc. : matrix representing the "errors" related to the a priori information on the state vector



## OE: quality control and error analysis

Error: 
$$S_{\varepsilon} = \left(\frac{\partial^2 J}{\partial \vec{x}^2}\right)^{-1} = \left(K_{\vec{x}}^T \cdot S_y^{-1} \cdot K_{\vec{x}} + S_x^{-1}\right)^{-1}$$





Measurement and numerical errors

Error on the prior information

$$K_{\vec{x}} = \frac{\partial F}{\partial \vec{x}}$$
 = Jacobian matrix (also called kernel, tangent linear model, adjoint model)

**Necessity to define diagnostic tools / parameters to quantify the quality of the retrieval:** eigenvalues of the error matrix, probability based on the number of degrees of freedom of the system, the cost function values, etc.

WARNING: Careful analysis as the state variables can represent various physical quantities!



#### **AEROSOL CLASSES**

# Non-spherical classes: organised according to the asymmetry parameter

→ determined by the ratio between large and small particles

# Spherical classes: organised according to the single scattering albedo

→ determined by the imaginary part of refractive index



### **OE: PRIOR INFORMATION**

- Aerosol classes  $\{(\omega_0(\lambda_1), g(\lambda_1)), (\omega_0(\lambda_2), g(\lambda_2)), ...\}$  imposed to the retrieval system without associated error in  $S_x$ .
- No a priori information on AOD
- AOD "almost" constant during the day
- Surface temporal stability









10/03/2005

<AOD> at 0.55µm



#### **EVALUATION**

Comparisons with AERON period 15/02/2005 - 15

No prior update = reference analysis ⇒ update of t

72 AERONET stations ove

Comparison with the AERO aerosol sphericity (con retrievals derived from



Slide: 26

## Quantitative effects of updating the prior information



## Quantitative effects of updating the prior information



On average → reduction of the RMSE and increase of the correlation when improving the prior information



## Aerosol sphericity: some comparisons...

| LDA           | SPHERICAL | NON-SPHERICAL |
|---------------|-----------|---------------|
| SPHERICAL     | 11.16%    | 34.05%        |
| NON-SPHERICAL | 5.16%     | 49.63%        |

#### LDA



#### **AERONET**









## **COMPARISONS WITH MODIS**



























## **COMPARIONS WITH MODIS**



## **COMPARISON WITH MODIS SRF ALBEDO**

#### Nile Delta



#### Conclusions

#### **Optimal Estimation:**

 powerful (but expensive) tool to inverse satellite data to retrieve AODs and surface properties and document the radiative (de)coupling between the surface and the aerosols.

#### **Comparison against AERONET:**

- Importance to get the surface anisotropy accurately retrieved
- Importance of updating the prior information in order to stabilize the surface and reduce the errors (err =  $0.05+20\%\tau$ )
- Separation between spherical and non-spherical particles. But more analysis needed...

#### **Comparison with MODIS:**

- LDA as a good spatial coverage
- Mean daily value might be a limiting assumption in case of dust storm.

