Application of the optimal

 estimation method to the joint retrieval of aerosol load and surrace reflectance from MSG/SEVIRI observationsYves Govaerts, EUMETSAT
Sebastien Wagner, Wagner Consulting
Phil Watts, EUMETSAT
Alessio Lattanzio, Makalumedia

SURFACE/ATMOSPHERE RADIATIVE COUPLING

- The anisotropy of the surface BRF is due to shadowing effects resulting from the "porosity" or "roughness" of the scene.
- The magnitude of this anisotropy is controlled by the ratio between the direct and diffuse downwelling radiation, and therefore by the amount of aerosol in the atmosphere.
- Diffuse downwelling radiation tends to reduce "sharpness" of the shadow and therefore the anisotropy magnitude.

$$
\tau_{\mathrm{A}}=0.1
$$

Surface reflectance No atmosphere

C030_T100_W2O_SRF_VGT_L03_Wet

OVERVIEW

\times Objective
× Algorithm description
\times Product evaluation
\times Conclusions

OBJECTIVE

Objectives of the Land Daily Aerosol algorithm (LDA):
Derive a mean daily aerosol optical thickness at $0.55 \mu \mathrm{~m}$ for various types of aerosol classes over land surfaces.

Aerosol above land...
How to separate the aerosol contribution from the surface one?
(Simultaneous retrieval of aerosol load and the surface properties)
Retrieval strategy:

- Daily accumulation of METEOSAT/SEVIRI data in VIS06 / VIS08 / NIR16 (15 / 30 min resolution)
- SIMULTANEOUS retrieval over land of:
mean daily AOD (550 nm) [Phase 1]
Hourly (?) AOD (550 nm) [Phase 2]
surface reflectance
- Inversion based on Optimal Estimation
- Update of the surface prior information, using a "memory" mechanism

OBJECTIVE : SEVIRI TRANSMITTANCE

OE RETRIEVAL METHOD

- Measurement vector and error covariance matrix
- Forward model and state parameters
- Cost function
- Surface prior information update
- Quality indicator
- Aerosol class selection

MEASUREMENT ERROR

- radiometric noise

- rectification inaccuracy
- inter-band calibration error
- Forward model
- Model parameters
- Aerosol autocorrelation

OE : MEASUREMENT VECTOR

tion: $1-10 \%$
ror: 1.5%
ariation: 1-10\% error: 1\%
r: 2-5\%

4 - June

OE : MEASUREMENT VECTOR

Example over Dakar

OE : Bayesian approach

$P(x \mid y)$ Posterior PDF of the state vector x, given the measurements
$P(y \mid x)$ PDF describing the knowledge of y if the state would be x (model + measurement errors)
$\boldsymbol{P}(\boldsymbol{x}) \quad$ Prior PDF to the state \boldsymbol{x}
$P(y) \quad$ Prior PDF of the measurement (constant)
Assumption: PDFs = Gaussian distributions

OE : What now?

Goal: maximising

$$
P\left(\vec{x} \mid y_{m}\right)
$$

Problem equivalent to minimising a cost funtion

$$
J(\vec{x})
$$

Where:

Svethod for minimising the cost function depend on the prodefing to solve (possible presence of local minima)

Ex ${ }_{\text {S }}$ Monte-Carlo, steepest descent, Marquardt-Levenberg, Newton, etc.
\boldsymbol{x} : matrix representing the "errors" related to the a priori information on the state vector

OE : quality control and error analysis

Error: $\quad S_{\varepsilon}=\left(\frac{\partial^{2} J}{\partial \vec{x}^{2}}\right)^{-1}=\left(\boldsymbol{K}_{\vec{x}}^{\boldsymbol{T}} \cdot \boldsymbol{S}_{\boldsymbol{y}}^{-1} \cdot \boldsymbol{K}_{\vec{x}}+\boldsymbol{S}_{\boldsymbol{x}}^{-1}\right)^{-1}$

Measurement and numerical errors

Error on the prior information

$$
K_{\vec{x}}=\frac{\partial \boldsymbol{F}}{\partial \vec{x}}=\text { Jacobian matrix (also called kernel, tangent linear }
$$

Necessity to define diagnostic tools / parameters to quantify the quality of the retrieval: eigenvalues of the error matrix, probability based on the number of degrees of freedom of the system, the cost function values, etc.

WARNING: Careful analysis as the state variables can represent various physical quantities!

AEROSOL CLASSES

Non-spherical classes: organised according to the asymmetry parameter \rightarrow determined by the ratio between large and small particles

Spherical classes:

 organised according to the single scattering albedo\Rightarrow determined by the imaginary part of refractive index

OE: PRIOR INFORMATION

- Aerosol classes $\left\{\left(\omega_{0}\left(\lambda_{1}\right), g\left(\lambda_{1}\right)\right),\left(\omega_{0}\left(\lambda_{2}\right), g\left(\lambda_{2}\right)\right), \ldots\right\}$ imposed to the retrieval system without associated error in S_{x}.
- No a priori information on AOD
- AOD "almost" constant during the day
- Surface temporal stability

Day t+1
Side: $210, k, \Theta, \sigma \ldots$

Day t+2

OE: OUTPUT EXAMPLE

10/03/2005

OE: OUTPUT EXAMPLE

10/03/2005

OE: OUTPUT EXAMPLE

10/03/2005

OE: OUTPUT EXAMPLE

$$
\begin{gathered}
10 / 03 / 2005 \\
\langle A O D\rangle \text { at } 0.55 \mu \mathrm{~m}
\end{gathered}
$$

EVALUATION

Comparisons with AERON period 15/02/2005-15

No prior update = referend analysis \Rightarrow update of t

72 AERONET stations ove

Comparison with the AERC aerosol sphericity (con retrievals derived from

Quantitative effects of updating the prior information

COMPLETE TIME SERIES

Quantitative effects of updating the prior information

ALL STATIONS

On average \rightarrow reduction of the RMSE and increase of the correlation when improving the prior information

4 - June

Aerosol sphericity:
 some comparisons...

LDA	SPHERICAL	NON-SPHERICAL
SPHERICAL	11.16%	34.05%
NON-SPHERICAL	5.16%	49.63%

LDA

AERONET

cOMPARISONS WITH MODIS

SEVIRI

MODIS

COMPARISON WITH MODIS SRF ALBEDO

Nile

Delta

Conclusions

Optimal Estimation :

- powerful (but expensive) tool to inverse satellite data to retrieve AODs and surface properties and document the radiative (de)coupling between the surface and the aerosols.

Comparison against AERONET :

- Importance to get the surface anisotropy accurately retrieved
- Importance of updating the prior information in order to stabilize the surface and reduce the errors (err $=0.05+20 \%$ т $)$
- Separation between spherical and non-spherical particles. But more analysis needed...

Comparison with MODIS :

- LDA as a good spatial coverage
- Mean daily value might be a limiting assumption in case of dust storm.

