

First results of the LAND-SAF project* on reference crop evapotranspiration

Henk de Bruin¹ and Isabel Trigo²

- 1) Associate Professor Emeritus, Wageningen University, The Netherlands; Visiting Professor King's College, London, UK; Freelance Consultant Bilthoven, The Netherlands
- ²) Instituto de Meteorologia, Lisbon, Portugal

*Project VS0802

With contributions of P. GAVILAN, A. MARTÍNEZ-COB, M. P. GONZÁLEZ DUGO M. A. JITAN, T. ENKU NIGUSSIE C. VAN DER TOL and A. GIESKE

Scope and Background

At least 80% of available fresh water is used for agriculture, i.e. **irrigation** in semi-arid regions

Crop water requirements

are estimated using the methodology described in a FAO by Allen et al., 1998:

Total groundwater abstraction for the year 2000; mm/year

From: Yoshihide Wada, et al., 2010

groundwater depletion for the year 2000 mm/year

From: Yoshihide Wada, et al., 2010

Groundwater depletion for the year 2000 mm/year

From: Yoshihide Wada, et al., 2010

4th LANDSAF Workshop, Toulouse, 15-17 November 2010

Global groundwater abstraction and depletion and demand (km³/year)

Yoshihide Wada, et al., 2010 suggest that groundwater depletion contributes for 1/3 of the observed sea level rise (idea from Bart van den Hurk)

Background:

We adopt the semi-empirical FAO -method (Allen et al., 1998) to estimate Crop water requirements:

FAO: ET_0 is estimated using a version of the Penman-Monteith equation

$$ET_o = \frac{0.408\Delta(R_n - G) + \gamma \frac{900}{T + 273} u_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34u_2)}$$

albedo = 0.23, roughness length for short grass, neutral conditions assumed, surface resistance r_s = 70 sm⁻¹

Result 1: FAO Penman-Monteith is the best! indeed!!!!

$$ET_o = \frac{0.408\Delta(R_{nest} - G) + \gamma \frac{900}{T + 273} u_2(e_s - e_a)}{\Delta + \gamma (1 + 0.34 u_2)}$$

But.....

Cordoba Lysimeter site data 2008

But.....

 ET₀ refers to hypothetical well-watered grass so meteorological input data must be collected over well-watered grass

• In real-life in semi-arid regions FAO-grass weather stations hardly exist!!!!

Examples well equipped station in practice

Station in Burkina Faso

Cordoba, Andalucia network

Objective

To develop a method to map daily and weekly ET_0 values using existing LANDSAF - products

LANDSAF Products used until now

- Daily accumulated **incoming solar radiation** R_s obtained through the integration of instantaneous values, estimated every 30-minute
- Air temperature at 2 m derived from ECMWF weather maps. Note that LANDSAF includes operational software tools to merge ECMWF and SEVIRI information.

$$ET_o = \frac{0.408\Delta(R_n - G) + \gamma \frac{900}{T + 273} u_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34u_2)}$$

Approach

In literature it has been shown that radiation based estimates of ET_0 might be a fair alternative for the full **PMFAO**, notably the formulas proposed and by

Makkink and Priestley-Taylor, requiring air temperature and incoming shortwave (DSSF) and net radiation, respectively

R_n versus R_s in case surface is not ideal FAO-grass

$$ET_o = \frac{0.408\Delta G) + \gamma \frac{900}{T + 273} u_2 (e_s - e_a)}{\Delta + \gamma (1 + 0.34 u_2)}$$

Result 2 of our project: Slob-de Bruin estimate of net radiation of well-watered 'FAO-grass', from solar radiation only works fine!

Zaragoza daily data for a couple of years

Result 3: Net radiation over bare soil of furthermore very sophisticated station in Burkina Faso compared with Slob-de Bruin

Result 2: measured net radiation NOT suitable for ET_o

In 1957 **Makkink** proposed

$$ET_{well-watered\ grass} = a_M \frac{s}{s + \gamma} \frac{R_s}{L_v} = f_{MAK}(T, p)R_s$$

 R_s = incoming solar radiation,

4th LANDSAF Workshop, Toulouse, 15-17 November 2010

Result 4: Ethiopia and Jordan Valley

• Published in: **Hydrol. Earth Syst. Sci., 14, 2219–2228, 2010**

ET₀-FAO Penman Monteith

EUMETSAT

Test Makkink: Woreta, Ethiopia, 1650 m, wet season

features: T₂ ECMWF and Air pressure effects in mountainous regions

BUT..... under dry hot advective conditions MAKKINK appears to underestimates ET_0

Ladies and gentlemen we have the honour to present you our novel revised Makkink Formula to estimate ET₀ for dry hot advective conditions

$$ET_{Makkink_Old} = f_{MAK}(T, p)R_s$$

$$ET_{Makkink_Re\,vised}$$
 = (1) R_{S}

Novel $f_{rev}(T.p)$

$$f_{rev} = a(p)(T-12) + b(p)$$
 $a(p) = 1.7 \frac{df_{old}(p,T)}{dT}\Big|_{T=12}$

b(p) chosen such that at 12 ${}^{0}Cf_{rev} = f_{old}$

Test revised Makkink for Cordoba Lysimeter site, 2008 under dry hot and advective conditions

Resul 5: Test of revised MAKKINK with LANDSAF R_s and T_2 as input

Cordoba, daily values, 2008

Results so far:

- 1. The FAO-Penman-Monteith method compares very well with lysimeter data
- 2. Slob-de Bruin method for net radiation of well-watered FAO-grass appears to work well
- 3. For any ET0 estimation method one should not use measured net radiation as input in semi-arid regions where the surface is never well-watered.
- 4. The old-Makkink appear to work well in the rainy season in Ethiopia
- 5. First results of LANDSAF revised Makkink approach are very promising, considering that
 - semi-empirical nature of revised Makkink
 - the small scatter for daily values, whereas weekly values are sufficient in practice
 - Our comparison with entirely independent lysimeter data
 - point value versus LANDSAF pixel size

but...... independent tests for other years or/and locations are needed.

Publications so far:

- H. A. R. de Bruin, I. F. Trigo, M. A. Jitan, N. Temesgen Enku, C. van der Tol, and A. S. M. Gieske, 2010, Reference crop evapotranspiration derived from geo-stationary satellite imagery: a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan, Hydrol. Earth Syst. Sci., 14, 1–10, 2010
- H.A.R. de Bruin, Isabel F. Trigo, P. Gavilan, A. Martínez-Cob & M. P. González-Dugo, Reference crop evapotranspiration estimated from geostationary satellite imagery, IAHS proceedings Hydrology and Remote Sensing Symposium, Jackson Hole, September 2010, USA
- **Z. Sun, M. Gebremichael, and H. A. R. de Bruin, 2010**: Mapping daily evapotranspiration and dryness index in the East African highlands using MODIS and SEVIRI data Hydrol. Earth Syst. Sci. Discuss., 7, 6285-6303
- **H.A.R. de Bruin**: R-scripts written in the open source language R allowing users who cannot afford to buy MATLAB to read and analyze data stored in compressed LANDSAF files

Planning next year

- More test of our revised Makkink approach in collaboration with IFAPA, Instituto de Investigación y Formación Agraria y Pesquera, CONSEJERÍA DE AGRICULTURA Y PESCA dr. Pedro Gavalan, dr. Ignacio Lorite and PhD-students:
- 1. for the Cordoba site but other years, 2009, 2010.
- 2. for other lysimeter sites in Spain
- 3. for other well-irrigated crops in Andalucía

Research on pressure effects in mountainous regions and accuracy ECMWF temperature

Research on improvement of revised Makkink approach using the full Penman-Monteith equation with Prof. Richard Allen. Collaboration needed with LANDSAF ET group of of Steven Dewitte

Potential Users

We have contact with potential users in Mediterranean countries a such as: Spain, Portugal, Italy, Croatia, Slovenia, Greece, Morocco, Tunisia, Israel, Syria, Jordan

In Africa: Ethiopia, South-Africa, Zimbabwe, Burkina Faso, Sudan and countries involved in the ESA TIGER project, in particular the Democratic Republic of Congo

In Brazil: The Sao Francisco River basin (approved project)

With Prof. Rick Allen proposals will be submitted for a a worldwide ET_{θ} project geostationary satellite imagery. LANDSAF/EUMETSAT can play a leading role here!!!!! The next GOES will be similar to MSG

Thanks for your attention