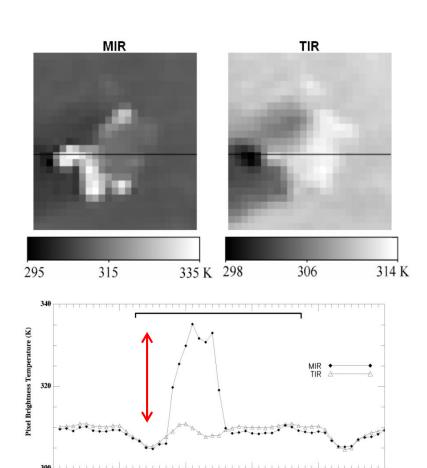
LSA-SAF Workshop 2015

Outline

- ☐ Active fire detection
 - Geostationary active fire detection
- ☐ Multi-temporal active fire detection approach
 - Modelling diurnal temperature cycle
 - Background characterisation
 - Active fire detections
 - Comparison to MODIS
- Conclusion

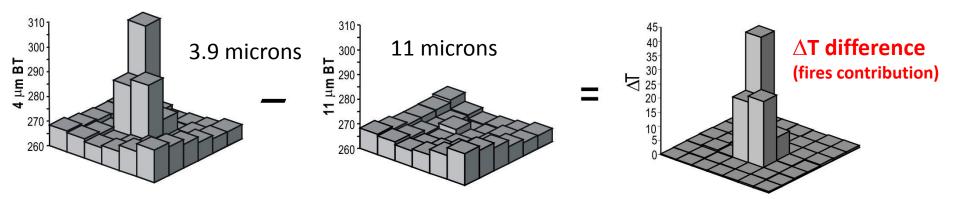
Active Fire Detection

- ☐ Strong heritage
 - 1st demonstrated in 1981 using NOAA AVHRR
- ☐ Detect location of 'actively' burning fires
 - uses MIR & TIR wavebands
 - exploits high sensitivity of MIR channel to fire thermal emissions
- ☐ Thermal measurements used to 'characterise' fire
 - effective fire temperature and area
 - Fire Radiative Power (FRP)



'Contextual' active fire detection

- Uses MIR & TIR observations
 - exploits high & low sensitivity of MIR & TIR channels to fire thermal emissions

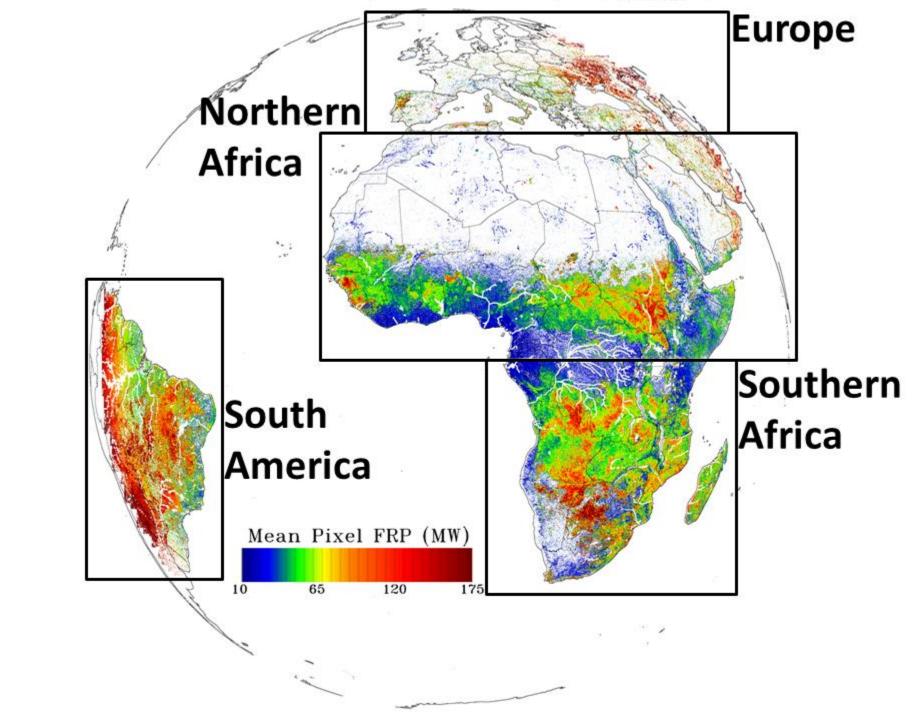


- \square Potential fire pixel (PFP) if ΔT > chosen threshold
- ☐ Apply neighbourhood operations to surrounding pixels
 - assess PFP temperature elevation against surrounding pixels
 - dynamically adjust thresholds -> more scene dependent
- ☐ Most operational fire detection algorithms are contextual
 - applied to both polar and geostationary instruments

Geostationary active fire detection

- ✓ Geostationary instruments
 - Operational
 - Longer time-series
- ✓ High temporal resolution
 - observes diurnal fire cycle
 - NRT application
- X Low spatial resolution
 - omission of small/low intensity fires
 - Pixel saturation issues
 - ~335K most GEO

SEVIRI MIR channel timeseries : Fires are white/bright



Multi-temporal active fire algorithm

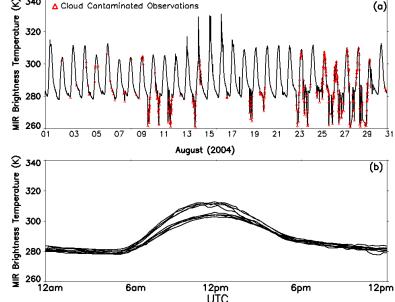
- exploit geostationary temporal information
 - leverages off contextual active fire detections
- $oldsymbol{\square}$ Improve :
 - 1. active fire detection sensitivity
 - background characterisation
 - characterises of the fire (e.g FRP)
 - est. fuel consumption
 - confirms 'true' fire detection

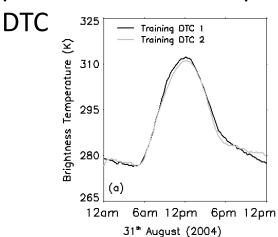
up to 82% (Schroeder et al., 2010 JGR)

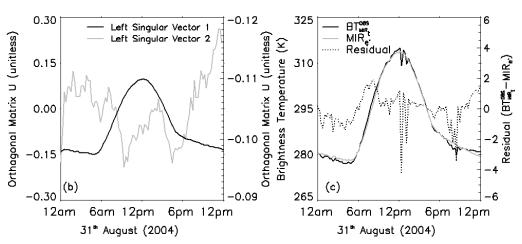
- Two components :
 - 1. model diurnal cycle MIR brightness temperature (BT)
 - non-fire affected obs.
 - 2. Standard Kalman Filter
 - account for errors in modelled DTC BT

Multi-temporal active fire algorithm: Modelling DTC

- ☐ DTC modelled using 'training' dataset
 - 10 input DTCs from current pixel
 - ~cloud and fire free
 - 'contextual' detections to identify active fire
 - <8 cloudy pixels
- Singular Value Decomposition
 - characterise temporal variation of pixel DTC → least squares estimate of obs.







Udahemuka et al., (2007), van den Bergh and Frost (2007); van den Bergh et al. (2009), IEEE TGRS

Multi-temporal active fire algorithm: Kalman Filter

☐ Standard Kalman Filter

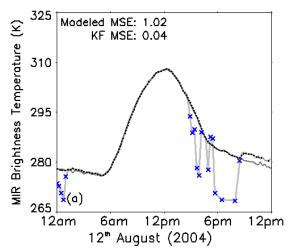
 modelled DTC is the process model

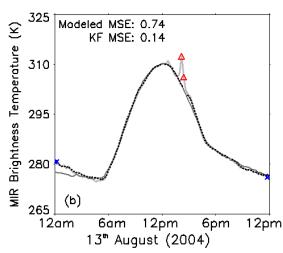
\square Kalman Gain \rightarrow 0

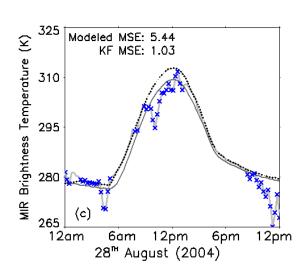
- fire or cloud affected observations
 - propagated using modelled DTC only

☐ Fire detection

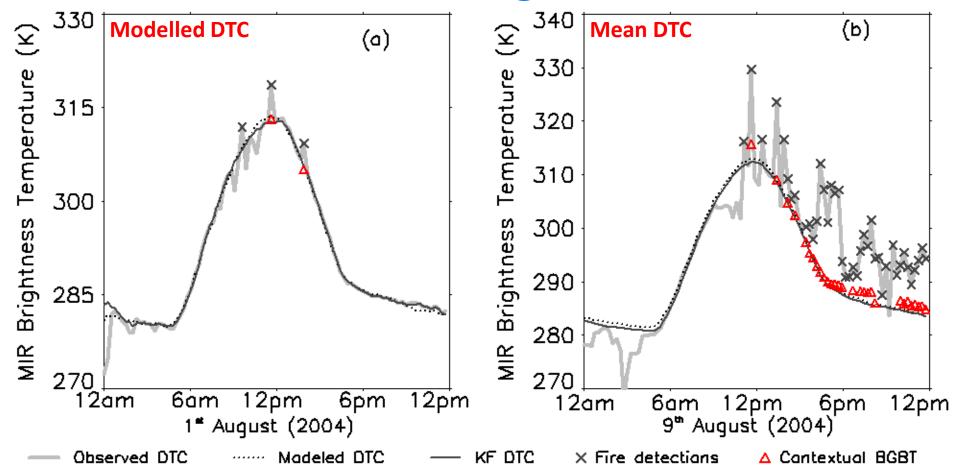
- MIR_{obs}-MIR_{mod}
 - 1K BT threshold
 - varies with MSE







Multi-temporal active fire algorithm: Modelling DTC

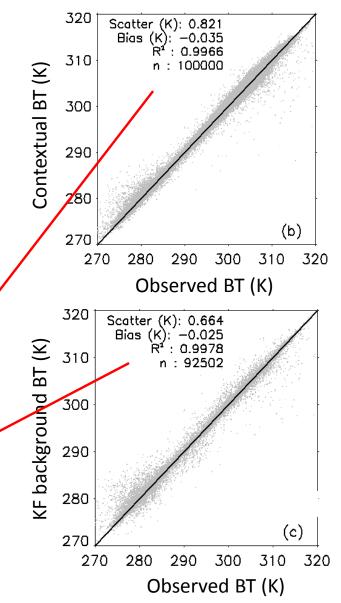


- ☐ DTC modelled only when:
 - <8 fire affected obs. & <40 cloudy obs.
 - Mean or previous modelled DTC used
 - based on training dataset

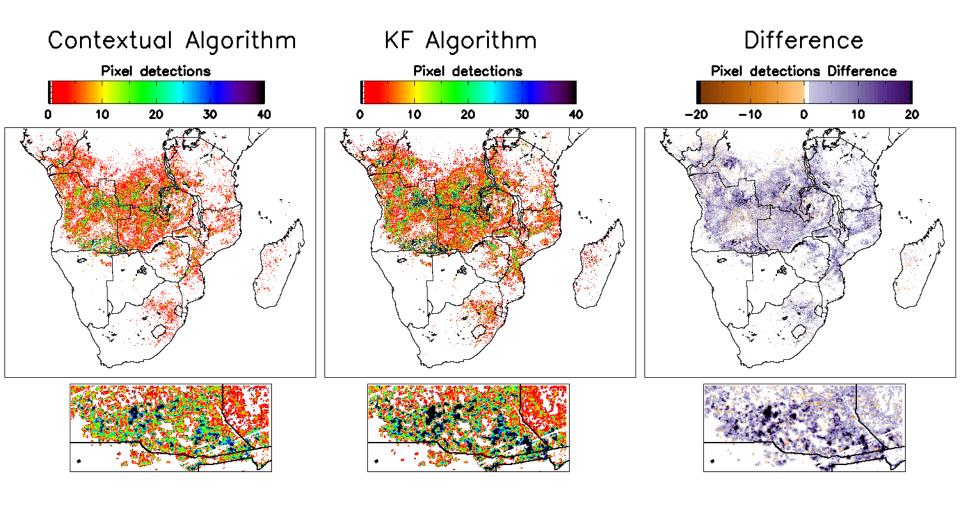
Multi-temporal active fire algorithm: Background Characterisation

- ☐ Applied to 1 month SEVIRI data
 - August (2004)
 - 15 min resolution
 - southern hemisphere Africa
- ☐ Compared to
 - MIR observations
 - contextual fire detection algorithm
 - background BT estimates
 - fire detections & FRP

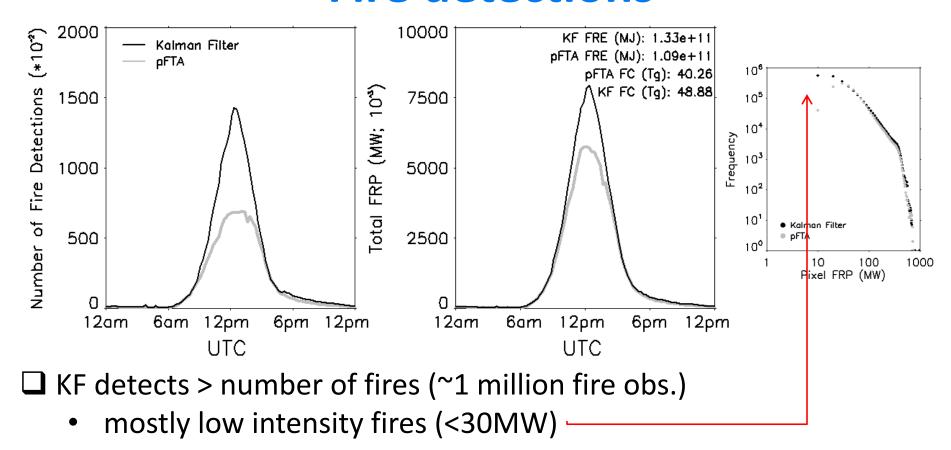
Both have low bias & scatter KF marginal improvement



Multi-temporal active fire algorithm: Fire detections



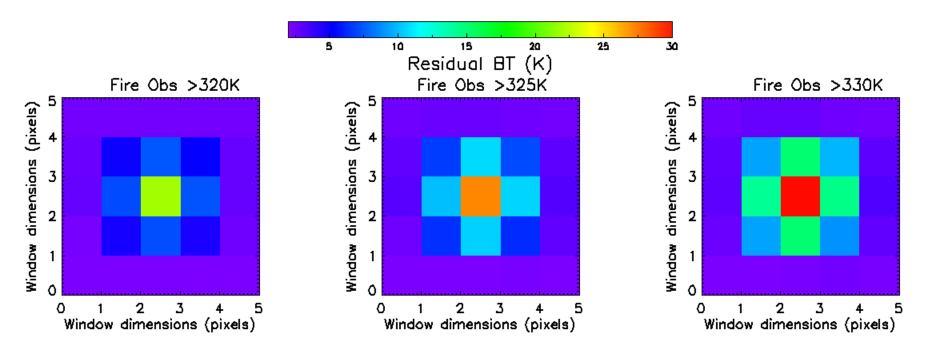
Multi-temporal active fire algorithm: Fire detections



- ☐ Lower relative improvement in fuel consumption
 - ~20% (8Tg)
 - BUT in a month where fires occur in locations where SEVIRI pixel area is large

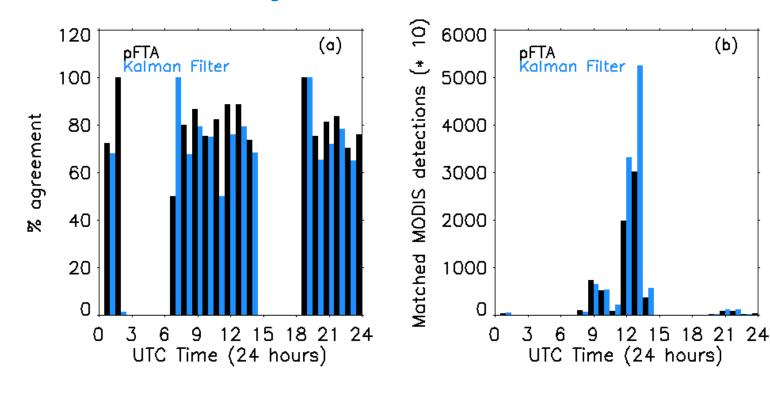
Background Characterisation: SEVIRI PSF impact

☐ Background characterisation important for fire detection and FRP measurement



Note: 3×3 pixel window surrounding active fire pixel not used for background characterisation in LSA-SAF FRP product

Multi-temporal active fire algorithm: Comparison to MODIS

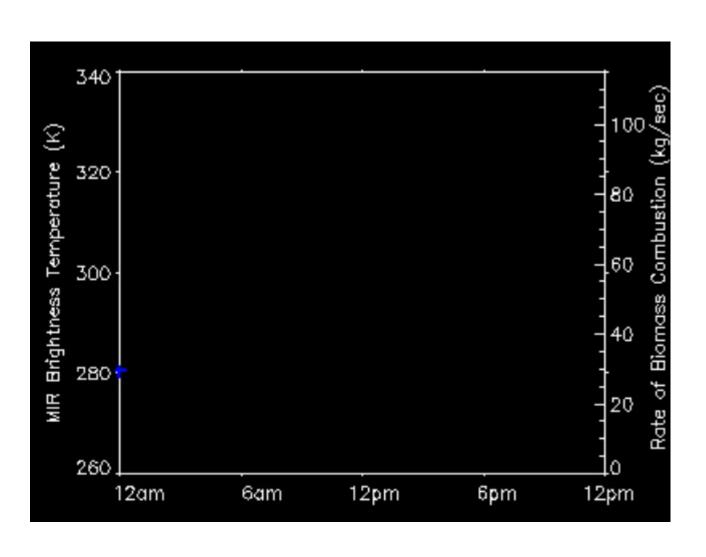


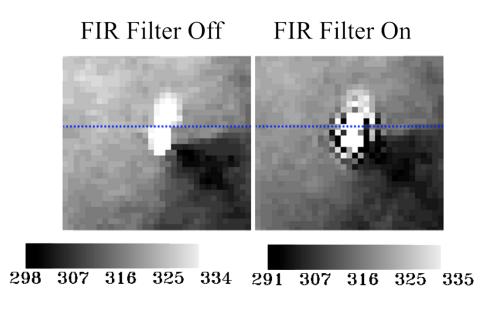
- ☐ Kalman Filter detects many more MODIS detections than contextual algorithm
 - 73,000 & 41,000
- ☐ BUT much higher 'false alarm' rate (16% compared to 8%)

Multi-temporal active fire algorithm: conclusion

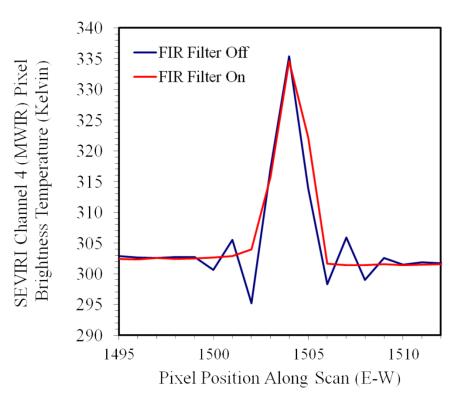
- □ Multi-temporal algorithms offer some benefits
 □ Detects > of active fires
 □ Lower intensity
 □ 20% increase in monthly fuel consumption
 □ Marginal improvement in background characterisation
- ☐ However :
 - high error of commission
 - limits of geostationary fire detection reached......
 - future GEO satellites offer higher spatial & temporal resolution
 - ☐ Better integration with 'contextual' fire detection approach may yield best results

Thanks to EUMETSAT, LSA-SAF & NASA for providing data





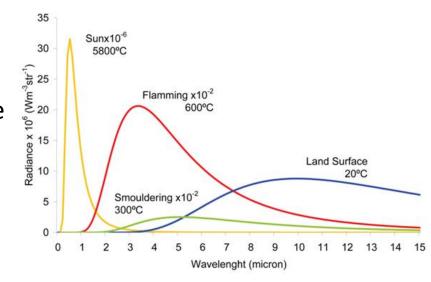
MWIR SEVIRI image over large fire

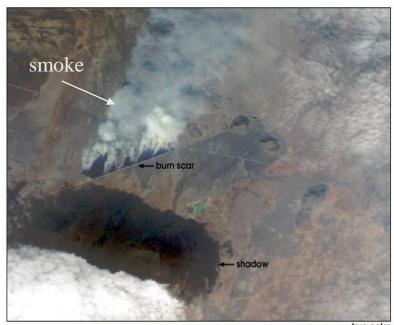


MWIR pixel BT transect across Active fire

Wildfire

- Fires have high temperatures compared to ambient surroundings
- High temperatures result in very intense radiant energy emissions particularly in the middle IR (3-5 μ m) spectral region.
- ☐ Fire MIR emission so strong that fires of $10^{-3} \rightarrow 10^{-4}$ pixel are detectable.





true color

infrared composite