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Summary 

- Challenges in thermal remote 
sensing of ET. 

- Why Penman-Monteith (PM) and 
Shuttleworth-Wallace (SW)? 

- Proposed modeling scheme and 
characteristics 

- Study region and data 

- Results 

- Conclusion 
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State-of-the-art 
uncertainties / challenges 

- Inequality between  aerodynamic 
temperature (T0) and TR (T0 ̧ TR) 

- Non-unique relationship between 
T0 and TR   

- universally agreed T0 model: 
unavailable 

- Aerodynamic conductance (gA): 
Semi-empirical 

- Canopy conductance (gC): 
oversighting the role of LST on gC. ω    SOA4: No 

LST driven gC 
model. 

ωSOA3: 
Different gA 
formulations. 

ωSOA2: soil canopy 
flux partitioning, 
bottom-up scaling 
of conductance, 
empiricism  

ωSOA1: Emphasis 
on sensible heat 
flux, Extra 
resistance, kB-1   

U1: T0 versus 
TR inequality. 

U2: no 
consensus on 

T0 model. 

U4: Missing 
gA and gC 
feedback 

U3: 
Unavailability 

of a 
physically-
based gA 
model. 



Why PM and SW? 

Penman-Monteith (Monteith, 
1965, 1981) 

Shuttleworth-Wallace (Shuttleworth 
and Wallace, 1985) 

f = RN ï G, s = f{TA} 
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gA = aerodynamic conductance 
gC = canopy (surface) conductance 



Integrating LST into PM-SW 
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STIC (Surface Temperature Initiated Closure) 
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(SW, 1985) 

Bhattarai et al., 2018; Mallick et al., 2016, 2018 



Characteristics 

Functional 
- Fully analytical 

- LST, aerodynamic 
conductance and 
vapor pressure 
feedback 

- Simultaneous ET 
partitioning 

- Application potential: 
both LEO and GEO 

 

Structural 
- Physical integration of LST: combining PM and 

SW to solve D0 

- No land surface parameterization for the 
conductances 

- Direct estimation of ET and H 

- Numerical estimation: Conductances, Priestley-
¢ŀȅƭƻǊ ʰ όŀǎ ŀ ǘƛƳŜ ǾŀǊȅƛƴƎ ǉǳŀƴǘƛǘȅΣ ƛƴǎǘŜŀŘ ƻŦ 
a fixed value), canopy-air stream properties. 

- Inputs: RN, G, TA, RH or eA, and LST (or TR). 

 



Evaluation: across an aridity gradient 
(Bhattarai, Mallick et al., 2018) 
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