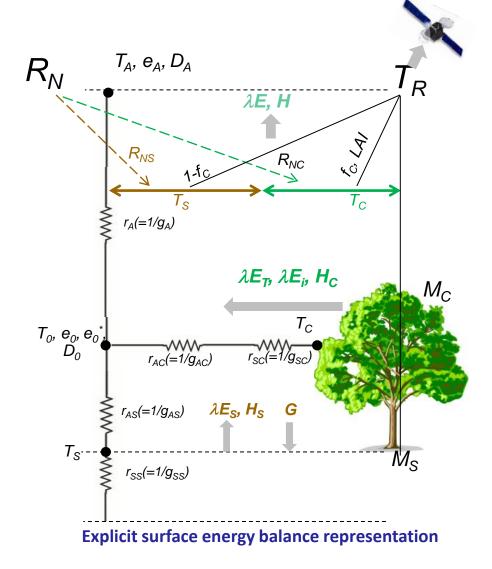

Evapotranspiration mapping across an aridity gradient in conterminous US by combining thermal remote sensing with Penman-Monteith and Shuttleworth-Wallace model

Kanis(h)ka Mallick¹, Nishan Bhattarai², Nathaniel Brunsel³, Ge Sun⁴, Meha Jain²

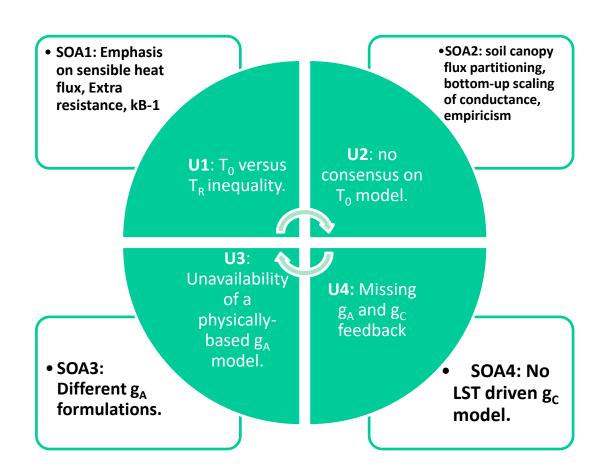
[kaniska.mallick@gmail.com; kaniska.mallick@list.lu]

¹Water Safety and Security Research Unit, Department ERIN, Luxembourg Institute of Science and Technology (LIST)

²School for Environment and Sustainability, University of Michigan, USA

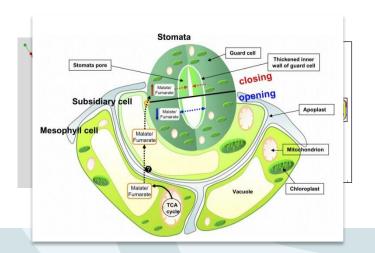

³Geography and Atmospheric Science, University of Kansas, USA

⁴Eastern Forest Environmental Threat Assessment Center, Southern Research Station, US
Department of Agriculture Forest Service, Raleigh, USA


Summary

- Challenges in thermal remote sensing of ET.
- Why Penman-Monteith (PM) and Shuttleworth-Wallace (SW)?
- Proposed modeling scheme and characteristics
- Study region and data
- Results
- Conclusion

State-of-the-art uncertainties / challenges


- Inequality between aerodynamic temperature (T_0) and T_R $(T_0 \neq T_R)$
- Non-unique relationship between T_0 and T_R
- universally agreed T₀ model:
 unavailable
- Aerodynamic conductance (g_A):
 Semi-empirical
- Canopy conductance (g_C) : oversighting the role of LST on g_C .

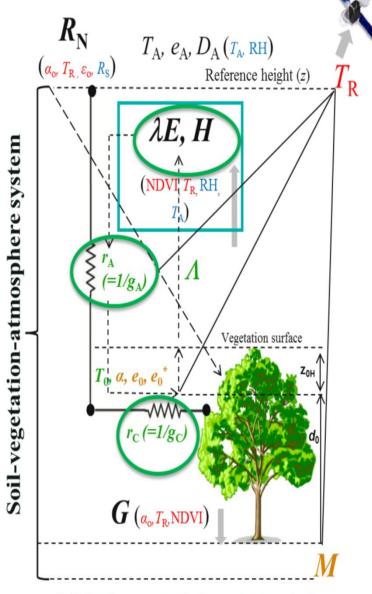
Why PM and SW?

Penman-Monteith (Monteith, 1965, 1981) $s\phi + \rho c_P g_A D_A$ $\lambda E_{PM} = \frac{s\phi + \rho c_P g_A D_A}{s + \gamma \left(1 + \frac{g_A}{g_C}\right)}$

$$\phi = R_N - G$$
, $s = f\{T_A\}$

Shuttleworth-Wallace (Shuttleworth and Wallace, 1985)

$$\lambda E_{SW} = \frac{s\phi_C + \rho c_P g_A^C D_0}{s + \gamma \left(1 + \frac{g_A^C}{g_S^C}\right)} + \frac{s\phi_S + \rho c_P g_A^S D_0}{s + \gamma \left(1 + \frac{g_A^S}{g_S^S}\right)}$$


$$D_0 = D_A + \frac{\{s\phi - (s + \gamma)\lambda E_{PM}\}g_A}{\rho c_P}$$

g_A = aerodynamic conductance g_C = canopy (surface) conductance

Integrating LST into PM-SW

$$\lambda E_{PM} = \frac{S \varphi + \rho c_P g_A D_A}{s + \gamma \left(1 + \frac{g_A}{g_C}\right)}$$

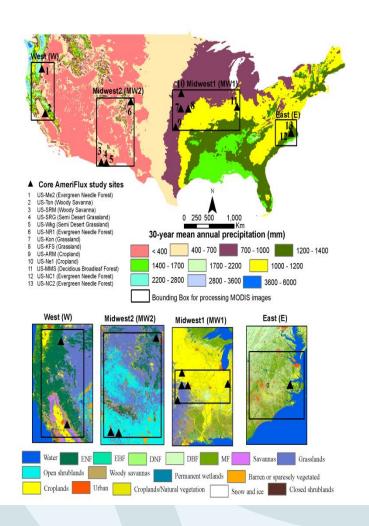
```
sv_1 = f\{c_1, c_2, c_3, v_1, v_2, v_3, v_4, sv_3, sv_5\}
sv_2 = f\{v_3, v_4, sv_1, sv_5, sv_6\}
sv_3 = f\{c_3, v_3, v_4, sv_4, sv_5\}
sv_4 = f\{c_3, v_3, sv_1, sv_2, sv_7, sv_8\}
sv_5 = f\{c_1, c_2, c_3, v_1, v_2, v_3, v_4, sv_1, sv_2, \lambda E_{PM}\}
sv_6 = f\{c_1, c_2, c_3, v_3, v_4, sv_1, sv_2, \lambda E_{PM}\}
sv_7 = f\{c_1, c_2, c_3, v_3, v_4, sv_1, sv_2, sv_3, sv_6, sv_8\}
sv_8 = f\{v_3, v_4, v_5, sv_1, \lambda E_{PM}\}
```


1-D Surface energy balance representation

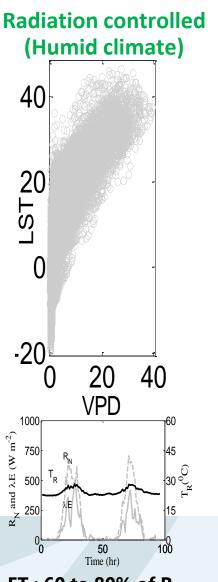
Bhattarai et al., 2018; Mallick et al., 2016, 2018

Characteristics

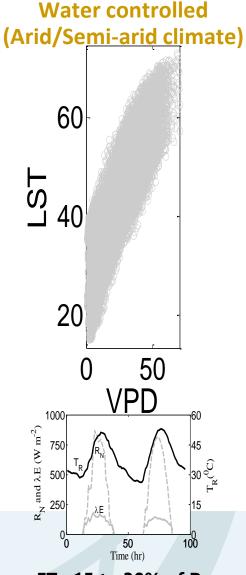
Functional


- Fully analytical
- LST, aerodynamic conductance and vapor pressure feedback
- Simultaneous ET partitioning
- Application potential: both LEO and GEO

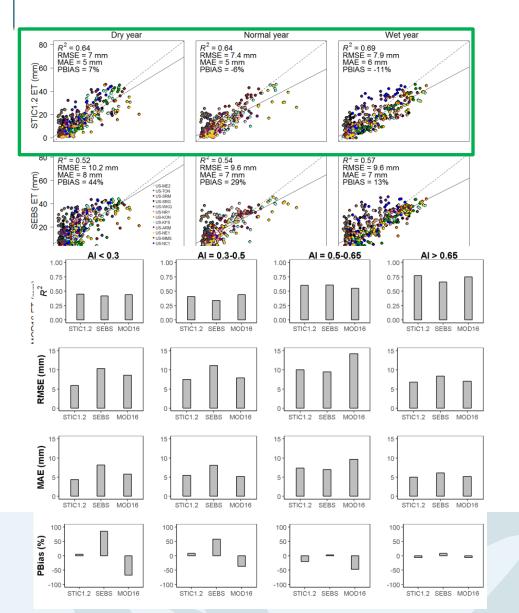
Structural

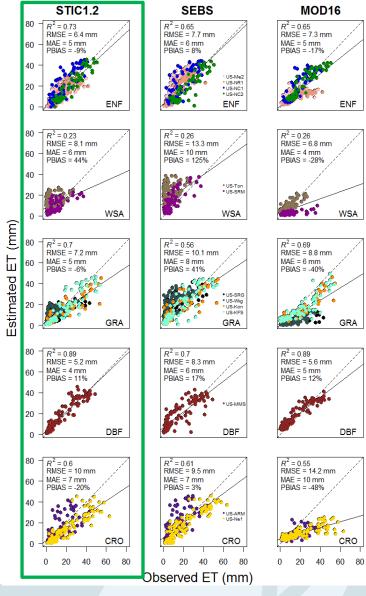

- Physical integration of LST: combining PM and SW to solve D_0
- No land surface parameterization for the conductances
- Direct estimation of ET and H
- Numerical estimation: Conductances, Priestley-Taylor α (as a time varying quantity, instead of a fixed value), canopy-air stream properties.
- Inputs: R_N, G, T_A, R_H or e_A, and LST (or TR).

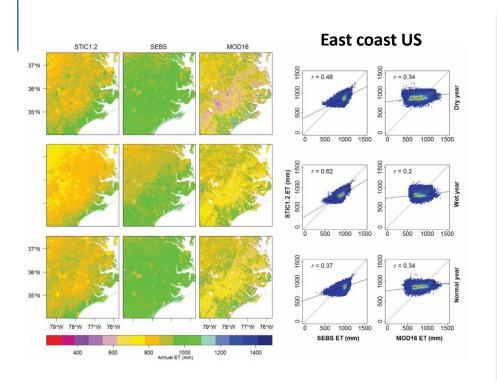
Evaluation: across an aridity gradient

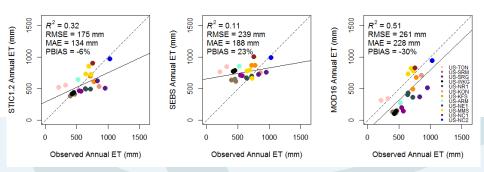

(Bhattarai, Mallick et al., 2018)

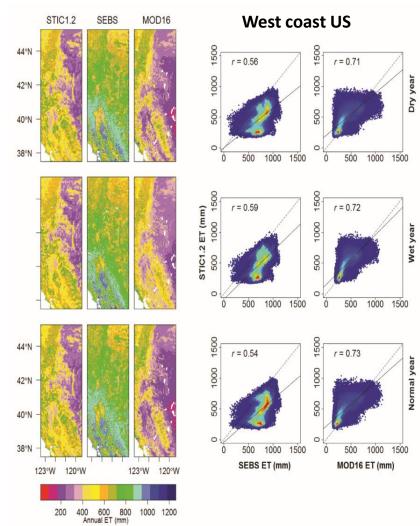
<u>Data</u>: MODIS LST, surface reflectances, NLDAS meteorology

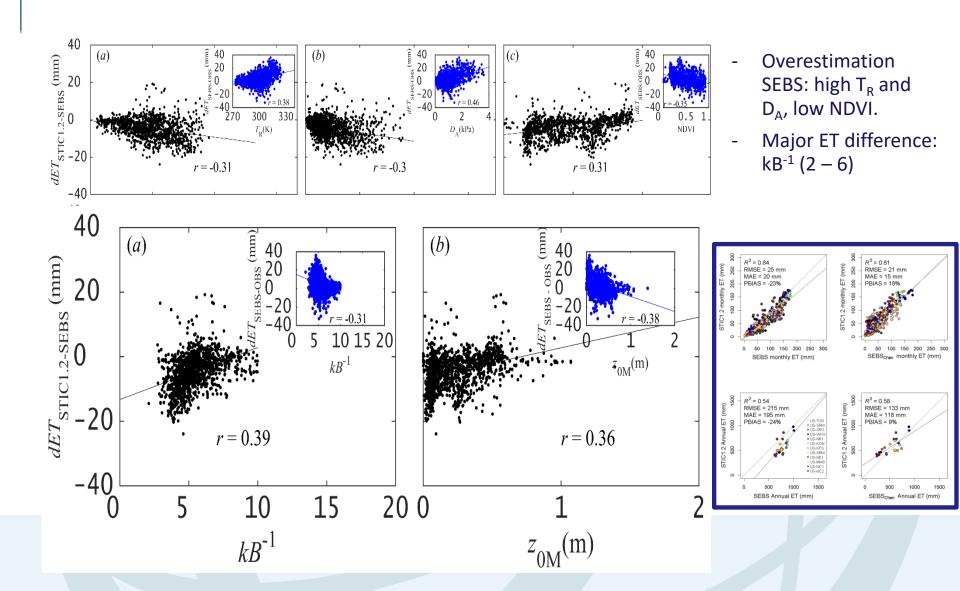





ET: 15 to 30% of R_N


Evaluation and model intercomparison (<u>Precipitation extreme</u>, <u>biome</u>, <u>aridity</u>)




Annual ET distribution and evaluation

Model differences: Forcings versus parameterizations (Bhattarai, Mallick et al., 2018)

Interpretation

- STIC1.2 explained significant variability in the observed 8-day cumulative ET,
 RMSE<1 mm/d
- Smallest errors in forests, followed by grassland, cropland, and woody savannas.
- Underestimation of ET in croplands: spatial-scale mismatch between a MODIS pixel and the flux tower footprint
- Overestimation of ET in woody savannas: large uncertainties in the MODIS LST product, SEB closure correction of EC ET observations, single-source approximations.
- Difference between STIC1.2 and SEBS: Differences in g_A estimation between the two models.
- Empirical characterization of z_{OM} and kB^{-1} in SEBS: major factors creating uncertainties in aerodynamic conductance and ET estimations.

Thank you!!

Hydrol. Earth Syst. Sci., 22, 2311-2341, 2018 https://doi.org/10.5194/hess-22-2311-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

Regional evapotranspiration from an image-based implementation of the Surface Temperature Initiated Closure (STIC1.2) model and its validation across an aridity gradient in the conterminous US

Nishan Bhattarai¹, Kaniska Mallick², Nathaniel A. Brunsell³, Ge Sun⁴, and Meha Jain¹

- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
- ²Remote Sensing and Ecohydrological Modeling, Water Security and Safety Research Unit, Dept. ERIN, Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
- ³Geography and Atmospheric Science, University of Kansas, Lawrence, KS 66045, USA
- ⁴Eastern Forest Environmental Threat Assessment Center, Southern Research Station, US Department of Agriculture Forest Service, Raleigh, NC 27606, USA

Correspondence: Nishan Bhattarai (nbhattar@umich.edu)

Received: 30 August 2017 - Discussion started: 11 September 2017 Revised: 19 March 2018 - Accepted: 19 March 2018 - Published: 18 April 2018

Hydrol. Earth Syst. Sci., 20, 4237-4264, 2016 www.hydrol-earth-syst-sci.net/20/4237/2016/ doi:10.5194/hess-20-4237-2016 © Author(s) 2016. CC Attribution 3.0 License.

Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin

Kaniska Mallick¹, Ivonne Trebs¹, Eva Boegh², Laura Giustarini¹, Martin Schlerf¹, Darren T. Drewry^{3,12}, Lucien Hoffmann¹, Celso von Randow⁴, Bart Krujit⁵, Alessandro Araùjo⁶, Scott Saleska⁷, James R. Ehleringer⁸, Tomas F. Domingues9, Jean Pierre H. B. Ometto4, Antonio D. Nobre4, Osvaldo Luiz Leal de Moraes10, Matthew Hayek 11, J. William Munger 11, and Steven C. Wofsy 11

- ¹Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), L4422, Belyaux, Luxembourg
- ²Department of Science and Environment, Roskilde University, Roskilde, Denmark
- ³Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109, USA
- ⁴Instituto Nacional de Pesquisas Espaciais (INPE), Centro de Ciência do Sistema Terrestre, São José dos Campos, SP, Brazil
- 5Wageningen Environmental Research (ALTERRA), Wageningen, the Netherlands
- ⁶Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Belém, PA, Brazil
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Bepartment of Biology, University of Utah, Salt Lake City, UT, USA
- ⁹Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), São Paulo, SP, Brazil
- ¹⁰Centro Nacional de Monitoramento e Alertas de Desastres Naturais, São Paulo, SP, Brazil
- ¹¹Department of Earth and Planetary Science, Harvard University, Cambridge, MA, USA
- ¹²Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California, USA

Correspondence to: Kaniska Mallick (kaniska.mallick@gmail.com) and Ivonne Trebs (ivonne.trebs@list.lu)

Received: 30 December 2015 - Published in Hydrol, Earth Syst. Sci. Discuss.: 27 January 2016 Revised: 21 June 2016 - Accepted: 14 September 2016 - Published: 19 October 2016

Water Resources Research

RESEARCH ARTICLE

10.1029/2017WR021357

Special Section:

Hydrology Delivers Earth System Sciences to Society (HESSS4): Improving and Integrating Knowledge Across Disciplines on Global Energy, Water and Carbon Cycles

Key Points:

- . Thermal remote sensing of evapotranspiration is critical due to uncertainties in aerodynamic temperature and conductance estimation
- · We integrated radiometric temperature into Penman-Monteith Shuttleworth-Wallace framework to directly estimate conductances and evapotranspiration
- · Moderate to low systematic errors in evanotranspiration across an aridity gradient in Australia

Bridging Thermal Infrared Sensing and Physically-Based **Evapotranspiration Modeling: From Theoretical** Implementation to Validation Across an Aridity Gradient in Australian Ecosystems

Kaniska Mallick¹, Erika Toivonen^{1,2,3,4}, Ivonne Trebs¹, Eva Boegh^{5,6}, James Cleverly⁷, Derek Eamus⁷ Derek Eamus⁷ Harri Koivusalo², Darren Drewry^{8,9}, Stefan K. Arndt¹⁰, Anne Griebel¹⁰, Jason Beringer¹¹ O, and Monica Garcia 12,13

¹Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg, 2Department of Built Environment, Aalto University School of Engineering, Espoo, Finland, 3Climate System Research, Finnish Meteorological Institute, Helsinki, Finland, ⁴Department of Physics, University of Helsinki, Helsinki, Finland, 5Department of Science and Environment, Roskilde University, Roskilde, Denmark, 6Now at Danish Agency for Data Supply and Efficiency, Copenhagen, Denmark, ⁷Terrestrial Ecohydrology Research Group, School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia, 8 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 9Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, CA, USA, 10School of Ecosystem and Forest Sciences, University of Melbourne, Melbourne, Vic, Australia, 11School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia, 12 Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark, 13 International Research Institute for Climate and Society, Earth Institute, Columbia University, Palisades, NY, USA

@AGU PUBLICATIONS

Water Resources Research

10.1002/2014WR016106

- Key Points:

 Reintroducing radiometric surface temperature into Penman-Monteith (PM) model Holistic surface moisture availability
- framework to constrain the PM equation

 Numerical estimation of
- Priestley-Taylor parameter

Correspondence to: K. Mallick,

kaniska.mallick@gmail.com kaniska.mallick@list.lu

Mallick, K., E. Boegh, I. Trebs Malikck, K., E. Boegh, I. Trebs, J. G. Affieri, W. P. Kustas, J. H. Prueger, D. Niyogi, N. Das, D. T. Drewry, L. Hoffmann, and A. J. Jarvis (2015), Reintroducing radiometric surface Reintroducing radiometric surface temperature into the Penman-Monteith formulation, Water Resour. Res., 51, 6214–6243, doi:10.1002/ 2014WR016106.

Received 7 JUL 2014 Accepted 9 JUL 2015 Accepted article online 14 JUL 2015 Published online 8 AUG 2015 Corrected 27 AUG 2015

RESEARCH ARTICLE Reintroducing radiometric surface temperature into the Penman-Monteith formulation

Kaniska Mallick¹, Eva Boegh², Ivonne Trebs¹, Joseph G. Alfieri³, William P. Kustas³, John H. Prueger⁴ Dev Niyogi⁵, Narendra Das⁶, Darren T. Drewry⁶, Lucien Hoffmann¹, and Andrew J. Jarvis⁷

¹Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux Luxembourg, ²Department of Environmental, Social and Spatial Change, Roskilde University, Roskilde, Denmark, ³USDA-ARS, Hydrology and Remote Sensing Laboratory, Beltsville, Maryland, USA, 4USDA-ARS, National Laboratory for Agriculture and Environment, Ames, Iowa, USA, 5 Department of Agronomy and the Department of Earth and Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA, ⁶Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, 7Lancaster Environment Centre, Lancaster University Lancaster, UK

Abstract Here we demonstrate a novel method to physically integrate radiometric surface temperature (T_R) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and ¿F) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combines To data with standard energy balance closure models for deriving a hybrid scheme that does not require parameter ization of the surface (or stomatal) and aerodynamic conductances (q_S and q_R). STIC is formed by the simultaneous solution of four state equations and it uses T_R as an additional data source for retrieving the 'near surface" moisture availability (M) and the Priestley-Taylor coefficient (a). The performance of STIC is tested using high-temporal resolution T_R observations collected from different international surface energy flux experiments in conjunction with corresponding net radiation (R_N) , ground heat flux (G), air temperature (T_A) and relative humidity (RH) measurements. A comparison of the STIC outputs with the eddy covariance measurements of λE and H revealed RMSDs of 7-16% and 40-74% in half-hourly λE and H estimates. These statistics were 5-13% and 10-44% in daily λF and H. The errors and uncertainties in both surface fluxes are comparable to the models that typically use land surface parameterizations for determining the unobserved components $(g_S \text{ and } q_R)$ of the surface energy balance models. However, the scheme is simpler, has the capabilities for generating spatially explicit surface energy fluxes and independent of submodels for boundary layer developments.