EPS Daily Land Surface Temperature (EDLST)

NRT Product Available since Jan 2015


Product Documentation

This pre-operational is documented in the Algorithm Theoretical Basis Document (ATBD), Product User Manual document (PUM) and the Product Output Format document (POF) The validation results for this product are available in the (VR) document.


Data Policy

The use of LSA SAF products in publications is kindly requested to be duly acknowledged:
EDLST was provided by the EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA SAF; Trigo et al., 2011)

Trigo, I. F., C. C. DaCamara, P. Viterbo, J.-L. Roujean, F. Olesen, C. Barroso, F. Camacho-de Coca, D. Carrer, S. C. Freitas, J. García-Haro, B. Geiger, F. Gellens-Meulenberghs, N. Ghilain, J. Meliá, L. Pessanha, N. Siljamo, and A. Arboleda, 2011: The Satellite Application Facility on Land Surface Analysis. Int. J. Remote Sens., 32, 2725-2744, doi: 10.1080/01431161003743199



Land Surface Temperature (LST) is the radiative skin temperature over land.


Product Description

The EDLST (EPS Daily Land Surface Temperature) provides a day-time and nigh-time retrievals of LST based on clear-sky measurements from the Advanced Very High Resolution Radiometer (AVHRR) on-board EUMETSAT polar system satellites, the Metop series.


Algorithm Description

The Generalised Split-Window (GSW) algorithm (Wan and Dozier, 1996) was chosen to retrieve LST. The GSW performs corrections for atmospheric effects based on the differential absorption in adjacent IR bands and requires EM as input data; a look-up table of optimal coefficients is previously determined at individual classes of satellite viewing angles, and covering different ranges of water vapour and near-surface air temperature.


Data Characteristics

The EDLST product is available on a daily basis in a 1 km global sinusoidal grid centred at (0°N, 0°W).


Product Uncertainties




Wan. Z., J. Dozier, 1996. A generalised split-window algorithm for retrieving land-surface temperature from space, IEEE Trans. Geosci. Remote Sens., vol. 34 no. 34, pp. 892-905.

Example of Product